Fundamentals of Switch-Mode Power Supply Testing

Practical Tips & Techniques

Power Quality

- Power Quality Issues
 - To determine the effect of the insertion of a power supply, voltage and current parameters must be measured directly on the input power line.
 - Power quality measurements include:
 - True, Apparent or Reactive Power
 - Power Factor/Crest Factor
 - Pre-compliance Testing to EN61000-3-2 Standards
 - Total Harmonic Distortion (THD)
 - Apparent Power: \(P = V_{rms} \times I_{rms} \)

- Power Factor: \(\text{Power Factor} = \frac{P_{true}}{P_{app}} \)
- Crest Factor: \(\text{Crest Factor} = \frac{V_{peak}}{V_{rms}} \)

Output Analysis

- Ripple is the periodic AC component
 - On top of the DC voltage output
 - Ripple frequency is related to:
 - Line frequency
 - ~120 Hz in countries with 60 Hz power
 - ~100 Hz in countries with 50 Hz power
 - Switching frequency
 - Typically > 100 kHz

Probing Considerations

Probes and probing techniques affect the quality of a measurement. Loading and skew between probes can introduce error and distortion in power measurements.

Tips:
- Eliminate skew between current and voltage probes. Since power is the product of voltage and current, accurate measurements are made with time-aligned voltage and current waveforms.
- Tektronix oscilloscopes with the TekVPI interface simplify measurement setup with automated deskew.
- Tip: Remove voltage offset by using the built-in DC offset adjustment controls on differential probe. Additionally run the oscilloscope self-calibration routine as often as necessary to ensure accurate voltage measurements.
- Tip: A TekVPI current probe has a Degauss/AutoZero button on the probe body. Depressing the AutoZero button will remove any DC offset error present in the measurement system as a result of any residual magnetic field.

Tektronix Oscilloscopes

- 100 MHz to 3.5 GHz models
- Up to 4 analog and 16 digital channels
- Comprehensive Probing Solutions
 - TekVPI interface for easy probe connectivity
 - AC-DC current probes
 - Differential probes to make floating measurements
 - High-voltage with high bandwidth for accurate characterization of fast edges
- Integrated Power Analysis Software
 - Automated power measurements including switching loss, ripple, power quality, current harmonics and modulation analysis
 - Measure core loss and BH curves on magnetic components
 - Quickly deskew voltage/current probes with built-in automation
 - Generate customized reports

Learn more about Tektronix power measurement and analysis solutions at: www.tektronix.com/power

Magnetics Analysis

- Inductors
 - Used in power supplies as a filter or energy storage device
 \[L = \frac{1}{2\pi f M} \]
- Transformers
 - Multiple-winding inductor or transformer used for stepping voltages up or down with the same net power level.
- Switching Loss Measurements

Switching Loss Measurements

- Switched-Mode Device
 - Compared to resistors and linear-mode devices, transistors dissipate very little power in either the On or Off state, achieving high efficiency with low heat dissipation.
 - Transistor switch circuits often dissipate the most energy during transitions because circuit parasitics prevent the device from switching instantaneously.
 - For the most part, the switching device determines the overall performance of an SMPS.

Power Loss Overview

- Turn-on Loss
 - Energy losses when the switching device changes from its non-conducting state to its conducting state
- Conduction Loss
 - Losses in the switching device when it is in saturation
- Turn-off Loss
 - Energy losses when the switching device changes from its conducting state to its non-conducting state.