
1

Combining Keithley Model 2651A
High Power SourceMeter® Instruments
for 100A Operation

Introduction
Source-measure units (SMUs), such as the Keithley Model 2651A
High Power System SourceMeter instrument, are the most
flexible and most precise equipment for sourcing and measuring
current and voltage. Because of this, they are widely used to test
semiconductor devices such as MOSFETs, IGBTs, diodes, high
brightness LEDs, and more.

With today’s focus on green technology, the amount of
research and development being done to create semiconductor
devices for power management has increased significantly. These
devices, with their high current/high power operating levels, as
well as their low On resistances, require a unique combination
of power and precision to be tested properly. A single Keithley
Model 2651A is capable of sourcing up to 50A pulsed and 20A
DC. For applications requiring even higher currents, Model
2651As can be combined to extend their operating range to
100A pulsed.

This application note demonstrates how to collect Rds (on)
measurement data from a power MOSFET device by using a
pulsed current sweep to test up to 100A (see Figure 1); however,
it can be easily modified for use in other applications. The
document is divided into three sections: theory, implementation,
and example.

Theory
Kirchhoff’s Current Law says that the sum of the currents
entering a node is equal to the sum of the currents leaving the

node. In Figure 2, two current sources representing SMUs and a
device under test (DUT) are connected in parallel.

Figure 2: The sum of the currents entering the node equals the sum of the
currents leaving the node.

In Figure 2, we can see that two currents, I1 and I2, are
entering Node A and a single current, IDUT, is leaving Node A.
Based on Kirchhoff’s Current Law we know that:

	 IDUT = I1 + I2

This means that the current delivered to the DUT is equal to
the sum of the currents flowing from each SMU. With two
SMUs connected in parallel, we can deliver to the DUT twice
the amount of current that can be delivered by a single SMU.
Using this method with two Model 2651As, we can deliver up to
100A pulsed.

Number 3115

Application Note
Series

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Vgs (V)

R
ds

 (
oh

m
s)

Id = 20A
Id = 40A
Id = 60A
Id = 80A
Id = 100A

	

0.020

0.018

0.016

0.014

0.012

0.010
0 10 20 30 40 50 60 70 80 90 100

Ids (Amps)

R
ds

 (
oh

m
s)

Vgs = 10V
Vgs = 6V

Figure 1: Example results after performing a pulsed Rds(on) current sweep (500μs pulse width and 0.01 NPLC) to test up to 100A on a power MOSFET device
using two Model 2651A SourceMeter instruments connected in parallel.

Node A

Node B

DUT

SMU #2

I2

IDUT

SMU #1

I1

http://www.sjelectronics.co.uk/

2

Implementation
In order to create a current source capable of delivering more
current than a single SMU can provide, we put two SMUs, both
configured as current sources, in parallel. Below is a quick
overview of what needs to be done to successfully combine
two Model 2651As so that together they can source up to 100A
pulsed. The following sections explain each item in detail.

1.	Use two Model 2651As, running the same version
of firmware.

2.	Use the same current range for both SMUs.

3.	Use the same regions of the power envelope (Figure 3) for
both SMUs.

4.	Use 4-wire mode on both SMUs with Kelvin connections
placed as close to the DUT as possible.

5.	Use the Keithley supplied cables. If this is not possible,
ensure your cabling matches the specifications of the
Keithley-supplied cable.

6.	Set the voltage limit of both SMUs. (When the output of an
SMU reaches its voltage limit, it goes into compliance.) The
voltage limit of one SMU should be set 10% lower than the
other SMU.

7.	Select the output off-mode of each SMU. This determines
whether an SMU will function as a voltage source set to
0V or as a current source set to 0A when the output is
turned off. When two SMUs are functioning in parallel as
current sources:

•	 The SMU with the lower voltage limit should have its
output off-mode set to NORMAL with the off function set
to voltage, and

•	 The SMU with the higher voltage limit should have its
output off-mode set to NORMAL with the off function set
to current.

Identical Model

Both SMUs MUST be the same model, the Model 2651A. This
ensures that if the SMUs are forced into a condition in which
one SMU must sink all of the current from the other SMU, the
SMU that is sinking is capable of sinking all the current. For this
reason, combining different model SourceMeter instruments in
parallel is NOT recommended. In addition, both SMUs should be
running the same version of firmware to ensure that both SMUs
perform the same.

Source Current Range

Both SMUs should be set to the same source current range. How
an SMU responds to a change in current level can vary with
the current range on which it is being sourced. By configuring
both SMUs to source on the same current range, both SMUs will
respond similarly to changes in current levels. This reduces the
chances for overshoots, ringing, and other undesired SMU-to-
SMU interactions.

Region of Power Envelope

Both SMUs should be configured to operate in the same region
of the power envelope (see Figure 3). In order for one SMU to
sink all the current of the other SMU, the sinking SMU must be
operating in an equivalent region of the power envelope as the
sourcing SMU.

When configured as a current source, the region of the
power envelope in which the SMU is operating is determined
by the source current range and the voltage limit value. When
combining SMUs in parallel, each SMU should be set to the same
source current range so the final determining factor for the
region is the voltage limit. As can be seen in Figure 3, the Model
2651A has three ranges of voltage limit values that determine
the operating region: >0V to ≤10V, >10V to ≤20V, and >20V to
≤40V. For example, if one SMU’s voltage limit is set to 20V, then
the other SMU’s voltage limit should be set to a value that is less
than 20V and greater than 10V in order to keep both SMUs in the
same operating region.

+20A

+30A

+50A

–50A

–10A

+10A
+5A

–5A

–20A

–30A

+10V–10V +20V–20V 0V

0A

+40V–40V

Pulse

DC

Figure 3: Power envelope for a single Model 2651A.

Connections

A simple connection diagram for combining two SMUs in parallel
for higher current can be seen in Figure 4.

Because the Model 2651A can produce such high currents,
test leads (even those with very little resistance) can produce
significant voltage drops and create errors in the voltage
measurements. To eliminate these errors, use 4-wire mode on
both SMUs with Kelvin connections placed as close to the DUT
as possible.

Cabling Considerations

Cables capable of supporting the high levels of current that the
Model 2651A can produce should be used to obtain the desired
performance. The cable provided by Keithley with the Model
2651A is designed for both low resistance and low inductance.
We recommend using this cable from the Model 2651A to as

3

close to the DUT as possible. If the Keithley cable cannot be
used, use wiring with as low a resistance and inductance as
possible. We recommend that wire of 12 AWG or thicker be used
with a single Model 2651A. When combining SMUs for greater
current, 10 AWG or thicker wire should be used. Guidelines for
cabling should be taken seriously since wiring not rated for the
current being sourced can affect the performance of the SMU
and could also create a potential fire hazard.

The following sections discussing resistance and inductance
are provided to help you verify that the cables you are using will
allow your system to function properly.

Resistance

The Model 2651A has the ability to compensate for errors caused
by voltage drops due to resistance in the force leads when large
currents are flowing. This allows the Model 2651A to deliver or
measure the proper voltage at the DUT rather than at the output
of the instrument. This is done by using Kelvin connections.

The resistance of any cabling and connections between the
SMUs’ output and the DUT should be kept as low as possible
to avoid excessive voltage drops across the force leads. This is
because there is a limit to how large a voltage drop an SMU
is capable of compensating for without adversely affecting

performance. In the Keithley Model 2651A, this limit is 3V per
source lead, which is imposed by the Kelvin connections.

A single Model 2651A is capable of sourcing up to 50A
pulsed and up to 20A DC. Using Ohm’s Law we can calculate the
maximum resistance allowed in our test leads so as not to exceed
the 3V limit under these maximum conditions. Ohm’s Law states:

	 V = I · R

where: V is voltage, I is current, and R is resistance. If we rewrite
this equation, solving for R we get:

	 R = V/I

To find the maximum resistance values allowed in our test
leads, we can substitute our limits for V and I.

	 3V		 3V
	 _________	 = 0.15W	 ____________	 = 0.06W
	 20A DC		 50A Pulse

Based on these calculations, the resistance of each source
lead should not exceed 150mW when only DC testing is used and
should not exceed 60mW when pulse testing is used.

For example, in Figure 5 the length of the test lead
represented by R3 should be as short as possible in order to
minimize its resistance value (and thus the voltage drop across
R3). In this configuration, the current that flows through R3 is
the sum of the current flowing through R1 and R2. If we assume
R1 = R2 = R3 and that both SMU #1 and SMU #2 are delivering
the same amount of current to the circuit, then the voltage drop
across R3 is twice as large as the voltage drop across R1 or R2
because twice as much current is flowing through R3 as there
is through R1 or R2. The voltage drop that each SMU sees is the
sum of the voltage drop across R3 and the voltage drop across its
own lead resistance, R1 or R2.

Inductance

The Model 2651A also has the ability to compensate for errors
caused by voltage drops due to inductance in the force leads.
As mentioned in the discussion about resistance, this allows the
Model 2651A to deliver or measure the proper voltage at the
DUT rather than at the output of the instrument. Inductance in
connections resists changes in current and tries to hold back the
current by creating a voltage drop. This is similar to resistance
in the leads. However, inductance only plays a role while the
current is changing, whereas resistance plays a role even when
current is steady.

The inductance of connections between the SMUs’ outputs
and the DUT should be kept as low as possible to minimize
impacting SMU performance. To drive fast rising pulses, the
Model 2651A must have enough voltage overhead to compensate
for the voltage drop created by the inductance. If the supply does
not have enough overhead, the inductance can slow the rise time
of the pulse.

Another reason why the inductance of connections between
the SMUs’ outputs and the DUT should be kept as low as

HI SHI

LO SLO

SMU #1

HI SHI

LO SLO

SMU #2DUT

Figure 4: Wiring diagram for connecting two SMUs in parallel using
4-wire mode.

R1 R2

R1

R3

R3

R2

SMU #1 SMU #2DUT

Figure 5: Model for test lead resistances.

4

possible is that if the inductance causes a voltage drop large
enough to exceed the 3V source-sense lead drop limit of the
Kelvin connections, readings could be affected. If the 3V limit
is exceeded, readings taken during the rising or falling edge of
the pulse could be invalid. However, readings taken during the
stable part of the pulse will not be affected.

On the Model 2651A, the amount of overhead in the
power supply varies depending on the operating region
in the power envelope (see Model 2651A datasheet at
www.keithley.com/data?asset=55786 for more detail); but, in
general, the amount of voltage drop caused by inductance
should be kept under the 3V source-sense lead drop limit of the
Kelvin connections. We can calculate the maximum amount of
inductance allowed in our connections by using the equation:

		 di
	 V = L ·	___
		 dt

where: V is the voltage in volts, L is the inductance in henries,
and di/dt is the change in current over the change in time. If we
rewrite the equation solving for L we get:

		 di
	 L = V /	___
		 dt

As an example, let’s assume that with zero inductance the
Model 2651A produces a 50A pulse through our DUT with a
rise time of 35µs. In order to not exceed the 3V limit while
maintaining this rise time, the max amount of inductance per
test lead is:

		 50A
	 3V /	______	= 2.1µH
		 35µs

In this example (35µs rise time for a 50A pulse), to not exceed
the 3V limit we must ensure that our test leads have less than
2.1µH of inductance per lead.

NOTE: The Model 2651A specifications indicate a maximum
inductive load of 3μH, thus the total inductance for both HI
and LO leads must be less than 3μH under all conditions.

Set the Compliance

In parallel configurations, like the one shown in Figure 5, the
voltage limit of one SMU should be set 10% lower than the
voltage limit of the other SMU. This allows only one SMU to go
into compliance and become a voltage source.

Definition

An SMU, or any real current source for that matter, has a limit as
to how much voltage it can output in order to deliver the desired
current. When the voltage limit in an SMU is reached, the SMU
goes into compliance and becomes a voltage source set to that
voltage limit. When the compliance on one SMU is set lower than
the compliance on the other SMU, the voltage limit can only be
reached by one of the SMUs. In other words, when the SMU with

the lower voltage limit goes into compliance, it becomes a voltage
source with low impedance and begins to sink the current from
the other SMU. With the SMU in compliance sinking current, the
other SMU can now source its programmed current level and
thus never go into compliance.

Setting Correct Voltage Limits

In a parallel SMU configuration, setting voltage limits properly
is important. If both SMUs were to go into compliance and
become voltage sources, then we would have two voltage sources
in parallel. If this condition occurs, an uncontrolled amount
of current could flow between the SMUs, possibly causing
unexpected results and/or damage to the DUT. This condition
can also occur if the DUT becomes disconnected from the
test circuit. Fortunately, this condition can easily be avoided
by setting the compliance for one of the SMUs lower than the
compliance of the other SMU.

For example, in Figure 6 we have two Model 2651As configured
as 20A current sources that are connected in parallel to create a
40A current source. The voltage limit of SMU #1 is configured to
10V and the voltage limit of SMU #2 is configured to 9V and they
are sourcing into a 10mW load. If one of the leads disconnects
from the DUT during the test, each SMU would ramp up its
output voltage trying to force 20A until SMU #2 reaches its
voltage limit of 9V and goes into compliance. SMU #1 continues
to raise its output voltage until 20A are flowing from it into SMU
#2. This condition can be seen in Figure 7. Because the SMUs
are the same model, SMU #2 can sink the 20A current SMU #1

SMU #2

20A

40A

SMU #1
Limit: 9VLimit: 10V

20A

10mΩ 400mV

+

–

Figure 6: Example of two current source SMUs connected in parallel and
functioning under normal operation.

SMU #2

20A

0A

SMU #1
Limit: 10V

20A

10mΩ9V
+
–

Figure 7: Example of two current source SMUs connected in parallel and
functioning under compliance operation (for example, if a lead disconnects).

5

is delivering to it. Note that operating in this condition will cause
SMU #2 to heat up quickly and will cause it to shut off if it heats
up too much. This over-temperature protection is a safety feature
built into the Model 2651A to help prevent accidental damage
to the unit.

Set the Output Off-Mode

Introduced with the Model 2651A are new features to the
NORMAL output off-mode of Series 2600A instruments.
Previously, under the NORMAL output off-mode, when the
output was turned off, the SMU was reconfigured as a voltage
source set to 0V. This would happen whether the SMU’s on
state was configured as a current source or a voltage source.
This is still the default configuration for the NORMAL output
off-mode; however, the NORMAL output off-mode can now have
its off function configured as a current source. With the off
function set to current, when the output is turned off the SMU is
reconfigured as a 0A current source. This happens whether the
SMU’s on state was configured as a current or voltage source.

When putting two SMUs configured as current sources in
parallel, the SMU whose On State voltage limit is set lower
should be configured using an output off-mode of NORMAL
with an off function of voltage and its Off State current limit
should be set to 1mA. The other SMU, whose On State voltage
limit is higher, should be configured using an output off-mode
of NORMAL with an off function of current and its Off State
voltage limit should be set to 40V. To illustrate this, let’s use
Figure 6 as an example. For this configuration, both SMU’s
output off-mode should be set to NORMAL. Also, SMU #1
should have its off function set to current with an off limit of
40V and SMU #2 should have its off function set to voltage with
an off limit of 1mA. (The 40V and 1mA off limits are provided
in the configuration guidelines in the reference manual of the
Model 2651A.)

Setup of this new output off mode configuration is done
through two new ICL commands:

•	 smua.source.offfunc

•	 smua.source.offlimitv

smua.source.offfunc is used to select the off function,
for example:

smua.source.offfunc = smua.OUTPUT_DCVOLTS
-- Sets the off function to voltage

smua.source.offfunc = smua.OUTPUT_DCAMPS
-- Sets the off function to current

smua.source.offlimitv is used to set the voltage limit of the
Off State configuration when the off function is current. It is
similar to the command smua.source.offlimiti, which sets
the current limit for the off state when the off function is voltage.
Example usage follows:

smua.source.offlimitv = 10
-- Sets the off state voltage limit to 10V

Correctly Setting the Output Off-Mode

If you configure an SMU as a current source and do not change
the off-mode, then when you turn the output off, the SMU will
switch its source function from current to voltage and begin
sourcing 0V. If you did not anticipate this switch, you could
have a problem as the SMU essentially becomes a short to
whatever is connected to it. If you had two SMUs in parallel
and the SMU whose output was still on was operating as a
voltage source when the other SMU’s output was turned off, you
would have two voltage sources in parallel, which could result
in excessive current flow and could potentially damage the SMU.

Figure 7 shows what would happen if a connection to the
DUT were severed. SMU #2, whose voltage limit is lower, would
go into compliance and SMU #1, with a higher voltage limit,
would deliver all of its current to SMU #2. If SMU #1’s output
were to be shut off unexpectedly and its output mode turned
it into a 0V voltage source, then we would have a 0V voltage
source in parallel with a 9V voltage source. In this case, SMU
#2 would come out of compliance and switch back to a current
source. However, uncontrolled current may flow before this
switch occurs.

If SMU #1 had its output off function configured as a current
source, the unexpected shut off of SMU #1’s output would not
have resulted in two voltage sources in parallel. Instead, SMU #1
would have simply dropped to a 0A current source. Because SMU
#1’s voltage limit was set higher than SMU #2’s voltage limit,
SMU #2 would remain in compliance but now no current would
flow in the system since SMU #1 is still in control and forcing 0A.

If the opposite situation were to occur and SMU #2’s output
turned off unexpectedly, the situation would still be safe. SMU
#2, whose off function was configured as a voltage source,
would simply drop down from the 9V state to 0V. This is not
a problem as SMU #1 is still a current source and holds the
current to the 20A it was sourcing. The system is still not settled,
however, since SMU #2 is configured with an off limit of 1mA.
Because of this, SMU #2 goes into compliance, becomes a 1mA
current source, and begins to raise its output voltage to try to
limit current to 1mA. At this state, we have two current sources
in parallel. As SMU #2 continues to ramp its output voltage,
SMU #1 goes into compliance at 10V and becomes a 10V voltage
source. In this state, SMU #2, a current source at this time, is in
control and only 1mA of current is flowing.

Example
This example is designed to collect Rds(on) measurement data
from a power MOSFET device by using a pulsed current sweep
to test up to 100A, however, it can be easily modified for use in
other applications.

6

0.020

0.018

0.016

0.014

0.012

0.010
0 10 20 30 40 50 60 70 80 90 100

Ids (Amps)

R
ds

 (
oh

m
s)

Vgs = 10V
Vgs = 6V

Figure 8: Example results.

Required Equipment

This example requires the following equipment:

•	 Two Model 2651A High Power System SourceMeter
Instruments that will be connected in parallel to source up
to 100A pulsed through the drain of the DUT

•	 One Model 26xxA System SourceMeter Instrument to control
the gate of the DUT

•	 Two TSP-Link® cables for communications and precision
timing between instruments

•	 One GPIB cable or one Ethernet cable to connect the
instruments to a computer

Communications Setup

The communication setup is illustrated in Figure 9. GPIB is
being used to communicate with the PC, but this application can
be run using any of the supported communication interfaces.
The TSP-Link connection enables communication between the
instruments, precision timing, and tight channel synchronization.

To configure the TSP-Link communication interface, each
instrument must have a unique TSP-Link node number.
Configure the node number of Model 2651A #1 to 1, Model
2651A #2 to 2, and Model 26xxA to 3.

Model 2651A SMU #1
(TSP-Link Node #1)

Model 2651A SMU #2
(TSP-Link Node #2)

Series 2600A SMU
(TSP-Link Node #3)

TSP-LINK

Controller

GPIB

Figure 9: Communications setup for examples.

To set the TSP-Link node number using the front panel
interface of either instrument:

1.	Press MENU.

2.	Select TSPLink.

3.	Select NODE.

4.	Use the navigation wheel to adjust the node number.

5.	Press ENTER to save the TSP-Link node number.

On Model 2651A #1, perform a TSP-Link reset to alert Model
2651A #1 to the presence of Model 2651A #2 and Model 26xxA:

NOTE: You can also perform a TSP-Link reset from the remote
command interface by sending tsplink.reset() to Model
2651A #1.

1.	Press MENU.

2.	Select TSPLink.

3.	Select RESET.

NOTE: If error 1205 is generated during the TSP-Link reset,
ensure that Model 2651A #2 and Model 26xxA have unique
TSP-Link node numbers.

Device Connections

Connections from the SourceMeter instruments to the DUT can
be seen in Figure 10. Proper care should be taken to ensure
good contact through all connections.

NOTE: For best results, all connections should be left floating
and no connections should be tied to ground. Also, all
connections should be made as close to the device as possible
to minimize errors caused by voltage drops between the DUT
and the points in which the test leads are connected.

Model
26xxA
SMU

Model
2651A

SMU #1

G

D

S
HI
SHI

SLO
LO

HI
SHI

SLO
LO

Model
2651A

SMU #2

HI
SHI

SLO
LO

Gate Resistor
(if required)

Figure 10: Connections for dual SMU Rds(on) sweep.

7

NOTE: During high current pulsing, the gate of your DUT may
begin to oscillate, creating an unstable voltage on the gate and
thus unstable current through the drain. To dampen these
oscillations and stabilize the gate, a resistor can be inserted
between the gate of the device and the Force and Sense Hi
leads of the Model 26xxA. If the gate remains unstable after
inserting a dampening resistor, enable High-C mode on the
Model 26xxA (leaving the dampening resistor in place).

Configuring the Trigger Model

In order to achieve tight timing and 100A pulses with two Model
2651As, the advanced trigger model must be used. Using the
trigger model, we can keep the 50A pulses of the two Model
2651As synchronized to within 500ns to provide a single 100A
pulse. Figure 11 illustrates the complete trigger model used in
this example.

In this example, Model 2651A #1 is configured to control the
overall timing of the sweep while Model 2651A #2 is configured
to wait for signals from Model 2651A #1 before it can generate a
pulse. The Model 26xxA is controlled by script in this example,
so its trigger model is not used.

Model 2651A #1 Trigger Model Operation

In Model 2651A #1’s trigger model (Figure 12), Timer 1 is used
to control the period of the pulse while Timer 2 is used to
control the pulse width. TSP-Link Trigger 1 is used to tell Model
2651A #2 to output its pulse.

When the trigger model of Model 2651A #1 is initialized, the
following occurs:

1.	The SMU’s trigger model leaves the Idle state, flows through
the Arm Layer, enters the Trigger Layer, outputs the ARMED
event trigger, and then reaches the Source Event where it
waits for an event trigger.

2.	The ARMED event trigger is received by Timer 1, which
begins its countdown and passes the trigger through to be
received by TSP-Link Trigger 1, and the SMU’s Source Event.

3.	TSP-Link Trigger 1 receives the event trigger from Timer 1
and sends a trigger through the TSP-Link to Model 2651A #2
to instruct it to output the pulse.

4.	The SMU’s Source Event receives the event trigger from Timer
1, begins to output the pulse, waits the programmed source
delay, if any, outputs the SOURCE_COMPLETE event to Timer
2, and then lets the SMU’s trigger model continue.

5.	Timer 2 receives the SOURCE_COMPLETE event trigger from
Timer 1 and begins to count down.

6.	The SMU’s trigger model continues to the Measure Event
where it waits a programmed measure delay, if any, takes a
measurement, and then continues until it hits the End Pulse
Event where it waits for an event trigger.

7.	Timer 2’s countdown expires and Timer 2 outputs an event
trigger to the SMU’s End Pulse Event.

8.	The SMU’s End Pulse Event receives the event trigger from
Timer 2, outputs the falling edge of the pulse, then lets the
SMU’s trigger model continue.

9.	The SMU’s trigger model then compares the current Trigger
Layer loop iteration with the trigger count.

a.	 If the current iteration is less than the trigger count, then
the trigger layer repeats and the SMU’s trigger model
reaches Source Event where it waits for another trigger
from Timer 1. Because Timer 1 had its count set to the
trigger count minus one, Timer 1 will continue to output
a trigger for each iteration of the Trigger Layer loop. The
trigger model then repeats from Step 3.

b.	 If the current iteration is equal to the trigger count, then
the SMU’s trigger model exits the Trigger Layer, passes
through the Arm Layer, and returns to the Idle state.

Model 2651A #2 Trigger Model Operation

In Model 2651A #2’s trigger model (Figure 13), Timer 1 is
used to control the pulse width and is programmed with the
same delay as Model 2651A #1’s Timer 2. The pulse period is
controlled by TSP-Link Trigger 1, which receives its triggers
from Model 2651A #1’s Timer 1, thus the pulse period for Model
2651A #2 is controlled by the same timer as the Model 2651A #1.

When the trigger model of Model 2651A #2 is initialized, the
following occurs:

1.	The SMU’s trigger model leaves the Idle state, flows through
the Arm Layer, enters the Trigger Layer, and then reaches the
Source Event where it waits for an event trigger.

2.	TSP-Link Trigger 1 receives a trigger from TSP-Link and
outputs an event trigger to the SMU’s Source Event.

3.	The SMU’s Source Event receives the event trigger from
TSP-Link Trigger 1, begins to output the pulse, waits for
a programmed source delay, if any, outputs the SOURCE_
COMPLETE event to Timer 1, and then lets the SMU’s trigger
model continue.

4.	Timer 1 receives the SOURCE_COMPLETE event trigger from
TSP-Link Trigger 1 and begins its countdown.

5.	The SMU’s trigger model continues until it reaches the
Measure Event where it waits for a programmed measure
delay, if any, takes a measurement, and then continues until
it hits the End Pulse Event where it stops and waits for an
event trigger.

6.	Timer 1’s countdown expires and Timer 1 outputs an event
trigger to the SMU’s End Pulse Event.

7.	The SMU’s End Pulse Event receives the event trigger from
Timer 1, outputs the falling edge of the pulse, then lets the
SMU’s trigger model continue.

8

Idle

Arm layer

Trigger layer

smua.trigger.

arm.count = 1

count = 100

IDLE_EVENT_ID

SWEEPING_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

arm.stimulus

source.stimulus

measure.stimulus

endpulse.stimulus

trigger.timer[1].
EVENT_ID

passthrough = true count = 99

stimulus

tsplink.trigger[1].

EVENT_ID

stimulus

mode = tsplink.TRIG_FALLING

tsplink.trigger[1].

EVENT_ID

stimulus

mode = tsplink.TRIG_FALLING

node[2].

Model 2651A (master)

node[1].

Model 2651A (subordinate)

Idle

Arm layer

Trigger layer

smua.trigger.

arm.count = 1

count = 100

IDLE_EVENT_ID

SWEEPING_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

arm.stimulus

source.stimulus

measure.stimulus

endpulse.stimulus

trigger.timer[2].
EVENT_ID

passthrough = false count = 1

stimulus
500e-6 s

50e-3 s

trigger.timer[1].
EVENT_ID

passthrough = false count = 1

stimulus
500e-6 s

Figure 11: Example of a complete trigger model for Rds(on) sweep up to 100A.

9

tsplink.trigger[1].

EVENT_ID

stimulus

mode = tsplink.TRIG_FALLING

node[2].

node[2] (Model 2651A)

Idle

Arm layer

Trigger layer

smua.trigger.

arm.count = 1

count = 100

IDLE_EVENT_ID

SWEEPING_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

arm.stimulus

source.stimulus

measure.stimulus

endpulse.stimulus

trigger.timer[1].
EVENT_ID

passthrough = false count = 1

stimulus
500e-6 s

Figure 13: Example of a trigger model for 2651A #2 for Rds(on) sweep up to 100A.

Idle

Arm layer

Trigger layer

smua.trigger.

arm.count = 1

count = 100

IDLE_EVENT_ID

SWEEPING_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

arm.stimulus

source.stimulus

measure.stimulus

endpulse.stimulus

trigger.timer[1].
EVENT_ID

passthrough = true count = 99

stimulus

tsplink.trigger[1].

EVENT_ID

stimulus

mode = tsplink.TRIG_FALLING

node[1] (Model 2651A)

node[1].

trigger.timer[2].
EVENT_ID

passthrough = false count = 1

stimulus
500e-6 s

50e-3 s

Figure 12: Example of a trigger model for 2651A #1 for Rds(on) sweep up to 100A.

10

8.	The SMU’s trigger model compares the current Trigger Layer
loop iteration with the trigger count.

a.	 If the current iteration is less than the trigger count, then
the trigger layer repeats and the SMU’s trigger model
reaches Source Event where it waits for another trigger
from TSP-Link Trigger 1. The trigger model then repeats
from Step 2.

b.	 If the current iteration is equal to the trigger count, then
the SMU’s trigger model exits the Trigger Layer, passes
through the Arm Layer, and returns to the Idle state.

Example Program Code

NOTE: The example code is designed to be run from Test
Script Builder or TSB Embedded. It can be run from other
programming environments such as Microsoft® Visual Studio
or National Instruments LabVIEW®, however, modifications
may be required.

The TSP script for this example contains all the code
necessary to perform a pulsed Rds(on) sweep up to 100A using
two Model 2651A High Power System SourceMeter instruments
and a Model 26xxA System SourceMeter instrument. This script
can also be downloaded from Keithley’s website at
www.keithley.com/base_download?dassetid=55808.

The script performs the following functions:

•	 Initializes the TSP-Link connection

•	 Configures all the SMUs

•	 Configures the trigger models of the two Model 2651As

•	 Prepares the readings buffers

•	 Initializes the sweep

•	 Processes and returns the collected data in a format that can
be copied and pasted directly into Microsoft Excel®

The script is written using TSP functions rather than a single
block of inline code. TSP functions are similar to functions in
other programming languages such as C or Visual Basic and
must be called before the code contained in them is executed.
Because of this, running the script alone will not execute the
test. To execute the test, run the script to load the functions
into Test Script memory and then call the functions. Refer to
the documentation for Test Script Builder or TSB Embedded for
directions on how to run scripts and enter commands using the
instrument console.

Within the script, you will find several comments describing
what is being performed by the lines of code as well as
documentation for the functions contained in the script. Lines
starting with

node[2].

are commands that are being sent to Model 2651A #2 through
the TSP-Link interface. Lines starting with

node[3].

are commands that are being sent to the Model 26xxA through
the TSP-Link interface. All other commands are executed on the
Model 2651A #1.

Example Program Usage

The functions in this script are designed such that the sweep
parameters of the test can be adjusted without needing to
rewrite and re-run the script. A test can be executed by calling
the function

DualSmuRdson()

with the appropriate values passed in its parameters.

Parameters of the function DualSmuRdson()

Parameter Units Description

gateLevel Volts Voltage level to which the gate will be held
during the test

dstart Amps Level of the first step in the drain sweep
dstop Amps Level of the last step in the drain sweep
dsteps N/A Number of steps in the drain sweep
pulseWidth Seconds Width of the pulse in the drain sweep

pulsePeriod Seconds Time between the start of consecutive pulses in the
drain sweep

pulseLimit Volts Voltage limit of the pulses in the drain sweep

This is an example call to function DualSmuRdson().

DualSmuRdson(10, 1, 100, 100, 500e-6, 50e-3, 10)

This call sets the gate SMU output to 10V, then sweeps the drain
of the DUT from 1A to 100A in 100 points. The points of this
sweep will be gathered using pulsed measurements with a pulse
width of 500µs and a pulse period of 50ms for a 1% duty cycle.
These pulses are limited to a maximum voltage of 10V. At the
completion of this sweep, all SMU outputs will be turned off
and the resulting data from this test will be returned in an Excel
compatible format for graphing and analysis.

11

Example Test Script Processor (TSP®) Script
--[[
 Title: Combining SMUs for 100A Example
 Description: This script is designed to perform an Rds(on)sweep on a power
 MOSFET device. It combines two 2651A SMUs in parallel to perform a current
 sweep up to 100A. Data collected from the sweep is then returned in a
 Microsoft Excel compatible format for plotting and analysis.

 Equipment needed:
 2x 2651A
 1x 26xxA
 2x TSP-Link Cable

 TSP-Link Configuration:

 Unit | Node #
 2651A #1 | 1
 2651A #2 | 2
 26xxA | 3

 Master Node (PC Interface): Node 1
]]

--[[
 Name: DualSmuRdson(gateLevel, dstart, dstop, dsteps, pulseWidth,
 pulsePeriod, pulseLimit)
 Description: This function uses two 2651A SMUs to perform a pulsed Rds(on)
 sweep with currents up to 100A.

 Parameters:
 gateLevel: The gate level to be used during the sweep
 dstart: The starting current level of the drain sweep
 dstop: The ending current level of the drain sweep
 dsteps:	 The number of steps in the drain sweep
 pulseWidth: The width of the drain pulse in seconds
 pulsePeriod: The time from the start of one drain pulse to
 the next in seconds
 pulseLimit: The voltage limit of the drain pulse in volts
 Note: Actual pulse limit will be 10% lower than setting
 to protect SMUs in a compliance condition

 Example Usage:
 DualSmuRdson(10, 1, 100, 100, 500e-6, 50e-3, 10)
]]

function DualSmuRdson(gateLevel, dstart, dstop, dsteps, pulseWidth, pulsePeriod, pulseLimit)
 tsplink.reset(3) -- Verify that at least three nodes are present
 reset()

 -- Configure 2651A #1 (Drain SMU 1)

 smua.reset()
 smua.source.func		 = smua.OUTPUT_DCAMPS
 smua.sense			 = smua.SENSE_REMOTE
 smua.source.offmode	 = smua.OUTPUT_NORMAL
 smua.source.offfunc	 = smua.OUTPUT_DCVOLTS
 smua.source.offlimiti	 = 1e-3	 -- Set off limit

 -- SMU #1 will be a 0V voltage source with 1mA limit when its
 -- output is turned off. SMU #2 will be a 0A current source with
 -- a 10V limit when the output is turned off. These settings keep
 -- the parallel combination safe in case one SMU is turned off.

 smua.source.rangei = math.max(math.abs(dstart / 2), math.abs(dstop / 2))
 smua.source.leveli		 = 0		 -- Sets the DC bias level
 smua.source.limitv		 = 9		 -- Sets the DC bias limit
 -- SMU #2 will have a voltage limit of 10V. By setting the voltage
 -- limit 10% lower than that of SMU #2, we can ensure that only
 -- one of the two SMUs will ever go into compliance and become a
 -- voltage source. This is desirable, because if both SMUs went
 -- into compliance, there would be two voltage sources in parallel,
 -- which is an unsafe condition.

 smua.measure.nplc		 = 0.005
 smua.measure.rangev		 = pulseLimit

12

 smua.measure.autozero		 = smua.AUTOZERO_ONCE
 smua.measure.delay =
 pulseWidth - ((1 / localnode.linefreq) * smua.measure.nplc)) - 20e-6

 -- Set the delay so that the measurement is near the end of the pulse

 -- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.collecttimestamps	 = 1
 smua.nvbuffer1.collectsourcevalues	 = 1
 smua.nvbuffer1.fillmode			 = smua.FILL_ONCE
 smua.nvbuffer2.clear()
 smua.nvbuffer2.collecttimestamps	 = 1
 smua.nvbuffer2.collectsourcevalues	 = 1
 smua.nvbuffer2.fillmode			 = smua.FILL_ONCE

 -- Configure TSP-Link Trigger 1
 tsplink.trigger[1].clear()
 tsplink.trigger[1].mode			 = tsplink.TRIG_FALLING
 tsplink.trigger[1].stimulus		 = trigger.timer[1].EVENT_ID
 -- TSP-Link Trigger 1 signals 2651A #2 to pulse

 -- Timer 1 controls the pulse period by triggering the pulse to begin
 trigger.timer[1].count	 = dsteps - 1
 trigger.timer[1].delay	 = pulsePeriod
 trigger.timer[1].passthrough = true
 trigger.timer[1].stimulus = smua.trigger.ARMED_EVENT_ID
 trigger.timer[1].clear()

 -- Timer 2 controls the pulse width
 trigger.timer[2].count	 = 1
 trigger.timer[2].delay	 = pulseWidth - 3e-6
 trigger.timer[2].passthrough = false
 trigger.timer[2].stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID
 trigger.timer[2].clear()

 -- Configure SMU Trigger Model for Sweep
 -- Each unit will source half the current, so divide the start
 -- and stop values by 2
 smua.trigger.source.lineari(dstart / 2, dstop / 2, dsteps)
 smua.trigger.source.limitv 	 = pulseLimit - (pulseLimit * 0.1)
 -- Again, keep the limit SMU #1 lower than the limit of SMU #2
 -- to prevent parallel V-sources
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2)
 smua.trigger.measure.action	 = smua.ENABLE

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action	 = smua.SOURCE_IDLE
 smua.trigger.endsweep.action	 = smua.SOURCE_IDLE

 smua.trigger.count		 = dsteps
 smua.trigger.arm.stimulus	 = 0
 smua.trigger.source.stimulus	 = trigger.timer[1].EVENT_ID
 smua.trigger.measure.stimulus	 = 0
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID
 smua.trigger.source.action	 = smua.ENABLE

 -- Configure 2651A #2 (Drain SMU 2)

 node[2].smua.reset()
 node[2].smua.source.func	 = node[2].smua.OUTPUT_DCAMPS
 node[2].smua.sense		 = node[2].smua.SENSE_REMOTE
 node[2].smua.source.offmode	 = node[2].smua.OUTPUT_NORMAL
 node[2].smua.source.offfunc	 = node[2].smua.OUTPUT_DCAMPS
 node[2].smua.source.offlimitv	 = 10	 -- Set off limit
 -- SMU will be a 0A current source with 10V limit when output is turned off
 node[2].smua.source.rangei =
 math.max(math.abs(dstart / 2), math.abs(dstop / 2))
 node[2].smua.source.leveli	 = 0	 -- Sets the DC bias level
 node[2].smua.source.limitv	 = 10	 -- Sets the DC bias limit

 node[2].smua.measure.nplc	 = 0.005
 node[2].smua.measure.rangev	 = pulseLimit
 node[2].smua.measure.autozero	 = node[2].smua.AUTOZERO_ONCE
 node[2].smua.measure.delay	 = (pulseWidth -
 ((1 / node[2].linefreq) * node[2].smua.measure.nplc)) - 20e-6

13

 -- Set the delay so that the measurement is near the end of the pulse

 -- Prepare the reading buffers
 node[2].smua.nvbuffer1.clear()
 node[2].smua.nvbuffer1.collecttimestamps = 1
 node[2].smua.nvbuffer1.collectsourcevalues = 1
 node[2].smua.nvbuffer1.fillmode = node[2].smua.FILL_ONCE
 node[2].smua.nvbuffer2.clear()
 node[2].smua.nvbuffer2.collecttimestamps = 1
 node[2].smua.nvbuffer2.collectsourcevalues = 1
 node[2]. smua.nvbuffer2.fillmode = node[2].smua.FILL_ONCE

 -- Configure TSP-Link Trigger 1
 node[2].tsplink.trigger[1].clear()
 node[2].tsplink.trigger[1].mode = node[2].tsplink.TRIG_FALLING

 -- Timer 1 controls the pulse width
 node[2].trigger.timer[1].count		 = 1
 node[2].trigger.timer[1].delay		 = pulseWidth - 3e-6
 node[2].trigger.timer[1].passthrough	 = false
 node[2].trigger.timer[1].stimulus =
 node[2].smua.trigger.SOURCE_COMPLETE_EVENT_ID
 node[2].trigger.timer[1].clear()

 -- Configure SMU Trigger Model for Sweep
 node[2].smua.trigger.source.lineari(dstart / 2, dstop / 2, dsteps)
 node[2].smua.trigger.source.limitv		 = pulseLimit
 node[2].smua.trigger.measure.iv(node[2].smua.nvbuffer1, node[2].smua.nvbuffer2)
 node[2].smua.trigger.measure.action		 = node[2].smua.ENABLE

 -- Return the output to the bias level at the end of the pulse/sweep
 node[2].smua.trigger.endpulse.action = node[2].smua.SOURCE_IDLE
 node[2].smua.trigger.endsweep.action = node[2].smua.SOURCE_IDLE
 node[2].smua.trigger.count		 = dsteps
 node[2].smua.trigger.arm.stimulus	 = 0
 node[2].smua.trigger.source.stimulus = node[2].tsplink.trigger[1].EVENT_ID
 node[2].smua.trigger.measure.stimulus = 0
 node[2].smua.trigger.endpulse.stimulus = node[2].trigger.timer[1].EVENT_ID
 node[2].smua.trigger.source.action	 = node[2].smua.ENABLE

 -- Configure the 26xxA (Gate SMU)

 node[3].smua.reset()
 node[3].smua.source.func	 = node[3].smua.OUTPUT_DCVOLTS
 node[3].smua.sense		 = node[3].smua.SENSE_REMOTE
 node[3].smua.source.levelv	 = gateLevel
 node[3].smua.source.highc	 = node[3].smua.ENABLE
 -- If you find your gate oscillating even with a dampening resistor
 -- in place, try enabling high-C mode to help stabilize the gate.

 -- Prepare the reading buffers
 node[3].smua.nvbuffer1.clear()
 node[3].smua.nvbuffer1.collectsourcevalues = 1
 if node[3].smua.nvbuffer1.fillmode ~= nil then
 node[3].smua.nvbuffer1.fillmode = node[3].smua.FILL_ONCE
 end
 node[3].smua.nvbuffer2.clear()
 node[3].smua.nvbuffer2.collectsourcevalues = 1
 if node[3].smua.nvbuffer2.fillmode ~= nil then
 node[3].smua.nvbuffer2.fillmode = node[3].smua.FILL_ONCE
 end

 -- Ready to begin the test

 -- Outputs on
 node[3].smua.source.output		 = node[3].smua.OUTPUT_ON
 node[2].smua.source.output		 = node[2].smua.OUTPUT_ON
 smua.source.output		 = smua.OUTPUT_ON

 if errorqueue.count > 0 then
 print(“Errors were encountered”)
 reset()
 return
 end
 -- Give the gate some time to settle before starting the sweep

14

 delay(0.001)
 node[3].smua.measure.iv(node[3].smua.nvbuffer1, node[3].smua.nvbuffer2)

 -- Start the 2651A #2 trigger model
 node[2].smua.trigger.initiate()
 -- Start the 2651A #1 trigger model
 smua.trigger.initiate()
 -- Wait until test is complete
 waitcomplete()						

 -- Outputs off
 node[3].smua.source.output		 = node[3].smua.OUTPUT_OFF	
 smua.source.output		 = smua.OUTPUT_OFF
 node[2].smua.source.output		 = node[2].smua.OUTPUT_OFF

 -- Print back data
 PrintDualSmuRdsonData()
end

--[[
 Function: PrintDualSmuRdsonData()
 Description:
 This function processes the data stored in the SMU reading buffers by
 function DualSmuRdson() and prints back the individual SMU data and the
 combined SMU data and Rds(on) readings in a format that is copy and paste
 compatible with Microsoft Excel.
]]
function PrintDualSmuRdsonData()
 -- Print the gate SMU readings
 print(“Gate SMU\r\nSource Value\tVoltage\tCurrent”)
 print(string.format(“%0.2f\t%g\t%g\r\n”,
 node[3].smua.nvbuffer1.sourcevalues[1],
 node[3].smua.nvbuffer2[1],
 	node[3].smua.nvbuffer1[1]))

 -- Print column headers
 print(“Timestamp\tSource Value\tVoltage 1\tCurrent 1\tVoltage
 2\tCurrent 2\tVoltage\tCurrent\tRds(on)”)
 -- Loop through the reading buffer printing one row at a time
 for i = 1,smua.nvbuffer1.n do
 	 -- Combined Source Level = SMU1 source level + SMU2 source level
 sourceLevel = smua.nvbuffer1.sourcevalues[i] +
 node[2].smua.nvbuffer1.sourcevalues[i]

 -- Combined Voltage = Average(SMU1 Voltage reading, SMU2 Voltage reading)
 combinedVoltage = (smua.nvbuffer2[i] + node[2].smua.nvbuffer2[i]) / 2

 -- Combined Current = SMU1 Current reading + SMU2 Current reading
 combinedCurrent = smua.nvbuffer1[i] + node[2].smua.nvbuffer1[i]

 -- Rds(on) = Combined Voltage / Combined Current
 rdson = combinedVoltage / combinedCurrent

 -- Print a row of data
 print(string.format(“%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g”,
 smua.nvbuffer1.timestamps[i],
 sourceLevel,
 smua.nvbuffer2[i],
 smua.nvbuffer1[i],
 node[2].smua.nvbuffer2[i],
 node[2].smua.nvbuffer1[i],
 combinedVoltage,
 combinedCurrent,
 rdson))
 end
end

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

KEITHLEY INSTRUMENTS, INC. ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

BELGIUM
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

CHINA
Beijing
Ph: 86-10-8447-5556
Fax: 86-10-8225-5018
china@keithley.com
www.keithley.com.cn

FRANCE
Saint-Aubin
Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

GERMANY
Germering
Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

INDIA
Bangalore
Ph: 080-26771071, -72, -73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

ITALY
Peschiera Borromeo (Mi)
Ph: 02-5538421
Fax: 02-55384228
info@keithley.it
www.keithley.it

JAPAN
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

KOREA
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

MALAYSIA
Penang
Ph: 60-4-643-9679
Fax: 60-4-643-3794
sea@keithley.com
www.keithley.com

NETHERLANDS
Gorinchem
Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

SINGAPORE
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
sea@keithley.com
www.keithley.com

SWITZERLAND
Zürich
Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

TAIWAN
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
info_tw@keithley.com
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

© Copyright 2011 Keithley Instruments, Inc. Printed in the U.S.A. No. 3115 04.19.11

