System Switch/Multimeter 08005834455
 Tel: +44 1536416200
 Fax: 08005835566 sales@sjelectronics.co.uk

 www.sjelectronics.co.uk

The Series 3700 offers scalable, instrument grade switching and multi-channel measurement solutions that are optimized for automated testing of electronic products and components. The Series 3700 includes four versions of the Model 3706 system switch mainframe along with a growing family of plug-in switch and control cards. When the Model 3706 mainframe is ordered with the high performance multimeter, you receive a tightly integrated switch and measurement system that can meet the demanding application requirements in a functional test system or provide the flexibility needed in stand-alone data acquisition and measurement applications.

Maximizes system control and flexibility

To provide users with greater versatility when designing test systems, the Series 3700 mainframes are equipped with many standard features. For example, easy connectivity is supported with three remote interfaces: LXI/Ethernet, General Purpose Interface Bus (GPIB), and Universal Serial Bus (USB). Fourteen digital I/O lines are also included, which are programmable

- Six slot system switch mainframe with optional high performance multimeter
- Multi-processor architecture optimized for high throughput scanning and pattern switching applications
- Remote PC control via Ethernet, USB, and GPIB interfaces
- Up to 576 two-wire multiplexer channels in one mainframe
- LXI Class B compliance with IEEE 1588 time synchronization
- Embedded Test Script Processor (TSP ${ }^{\circledR}$) offering unparalleled system automation, throughput, and flexibility
- TSP-Link ${ }^{\circledR}$ master/slave connection provides easy system expansion and seamless connection to Series 2600 SourceMeter ${ }^{\circledR}$ instruments
- Capable of over 14,000 readings per second to memory with optional high performance multimeter
- Embedded Web browser interface for test setup, maintenance, and basic application control
- Variety of instrument grade switch and control cards and can be used to control external devices such as component handlers or other instruments. Additionally, system control can be greatly enhanced by using our Test Script Processor (TSP) technology. This technology provides "smart" instruments with the ability to perform distributed processing and control at the instrument level versus a central PC.

High quality switching at a value price

The Series 3700 builds upon Keithley's tradition of producing innovative, high quality, precise signal switching. This series offers a growing family of high density and general purpose plug-in cards that accommodates a broad range of signals at very competitive pricing. The Series 3700 supports applications as diverse as design validation, accelerated stress testing, data acquisition, and functional testing.

Model 3706 mainframe

The Series 3700 includes the base Model 3706 system switch/multimeter mainframe with three options for added flexibility. This mainframe contains six slots for plug-in cards in a compact 2 U high (3.5 inches $/ 89 \mathrm{~mm}$) enclosure that easily accommodates the needs of medium to high channel count applications. When fully loaded, a mainframe can support up to 576 two-wire multiplexer channels for unrivaled density and economical per channel costs.

High performance, 7½-digit multimeter (DMM)

The high performance multimeter option provides up to $71 / 2$-digit measurements, offering 26 -bit resolution to support your ever-increasing test accuracy requirements. This flexible resolution supplies a DC reading rate from $>14,000$ readings/second at $3^{11 / 2}$ digits to 60 readings/second at $71 / 2$ digits to accommodate a greater span of applications. The multimeter does not use a card slot, so you maintain all six slots in your mainframe. In addition, the multimeter is wired to the mainframe's analog backplane, ensuring a high quality signal path from each card channel to the multimeter.

The multimeter supports 13 built-in measurement functions, including: DCV, ACV,

Single Channel Reading Rates

Resolution	DCV/ 2 Wire Ohms	4 Wire Ohms
$71 / 2$ Digits (1 NPLC)	60	29
6122 Digits (0.2 NPLC)	295	120
51⁄2 Digits (0.06 NPLC)	935	285
41⁄2 Digits (0.006 NPLC)	6,300	580
$31 / 2$ Digits (0.0005 NPLC)	14,000	650

Series 3700

System Switch/Multimeter and Plug-In Cards

Ordering Information

$\left.3706 \quad \begin{array}{l}\text { Six-slot system } \\ \text { switch with high } \\ \text { performance DMM }\end{array}\right\}$

3706-S Six-slot system switch
3706-SNFP
Six-slot system switch, without front panel display and keypad
3720 Dual 1×30 multiplexer card (auto CJC with 3720-ST)
3721 Dual 1×20 multiplexer card (auto CJC with 3721-ST)
3722 Dual 1×48, high density, multiplexer card
3723 Dual 1×30, high speed, reed relay multiplexer card
$3730 \quad 6 \times 16$, high density, matrix card
$3740 \quad 32$ channel isolated switch card

Accessories Supplied
Test Script Builder
Software Suite CD
Ethernet Crossover
Cable (CA-180-3A)
Series 3700 Product CD
(includes LabVIEW ${ }^{\circledR}$, IVI C, and IVI.COM drivers)

Measurement capabilities of the high performance multimeter

ACCESSORIES AVAILABLE

| GPIB INTERFACES AND CABLES | | | SERVICES AVAILABLE |
| :--- | :--- | :--- | :--- | :--- |

1.888.KEITHLEY (U.s. only)

Series 3700

System Switch/Multimeter and Plug-In Cards

TSP distributed control increases test speed and lowers test cost

TSP technology enhances instrument control by allowing users the choice of using standard PC control or of creating embedded test scripts that are executed on microprocessors within the instrument. By using TSP test scripts instead of a PC for instrument control, you avoid communication delays between the PC controller and instrument, which results in improved test throughput. Test scripts can contain math and decisionmaking rules that further reduce the interaction between a host PC and the instrument.

This form of distributed control supports the autonomous operation of individual instruments or groups of instruments and can possibly remove the need for a high level PC controller, which lowers test and ownership costs. This is the same proven TSP technology found in our innovative Series 2600 System SourceMeter instruments.

TSP-Link for easy and seamless system coordination and expansion

If your channel density requirements grow or if you need to process more signal types, use TSP-Link to expand your system. The TSP-Link master/slave connection offers easy system expansion between Series 3700 mainframes. You can also use TSP-Link to connect to other TSPLink enabled instruments such as Series 2600 SourceMeter instruments. Everything connected with TSP-Link can be controlled by the master unit, just as if they were all housed in the same chassis.

TSP-Link is a high speed system expansion interface that lets users avoid the complex and time consuming task of expanding their remote interfaces to another mainframe. There is no need to add external triggers and remote communication cables to individual instruments, since all TSP-Link connected devices can be controlled from a single master unit.

Test Script Builder software suite

Test Script Builder is a software tool that is provided with all Series 3700 instruments to help users easily create, modify, debug, and store TSP test scripts. It supplies a project/file manager window to store and organize test scripts, a text-sensitive program editor to create and modify test TSP code, and an immediate instrument control window to send Ethernet, GPIB, and USB commands and to receive data from the instrument. The immediate window also allows users to see the output of a given test script and simplifies debugging.

Test Script Builder Software Suite

LXI class B

Series 3700 mainframes are LXI Class B compliant instruments. The features include a 10/100M Base-T Ethernet connection, graphical Web server, LAN based instrument triggering, and IEEE 1588 precision time protocol (PTP) synchronization. PTP time synchronization provides a standard method to synchronize devices on an Ethernet network with microsecond precision for time/event based programming.

Transportable memory, USB 2.0 device port

All Model 3706 mainframes contain a USB device port for easy transfer of readings, configurations, and test scripts to memory sticks. This port, which is located on the front panel, provides you with easy access to and portability of measurement results. Simply plug in a memory stick and, with a few simple keystrokes, gain access to virtually unlimited memory storage. Additional capabilities include: saving and recalling system configurations and storage for TSP scripts.

Series 3700

System Switch/Multimeter and Plug-In Cards

Embedded Web server

The built-in Web interface offers a quick and easy method to control the instrument remotely. Interactive schematics of each card in the mainframe support point-and-click control for opening and closing switches. A scan list builder is provided to guide users through the requirements of a scan list (such as trigger and looping definitions) for more advanced applications. When the mainframe is ordered with the multimeter, additional Web pages are included for measurement configuration and viewing.

Model 3706 front panel

Model 3706-S front panel

Model 3706-NFP and Model 3706-SNFP front panel

Model 3706 rear panel

1.888.KEITHLEY (u.s. only)

Series 3700

System Switch/Multimeter and Plug-In Cards

High Performance Multimeter

DC Specifications

CONDITIONS: MED (1 PLC) or SLOW (5 PLC).
For <1PLC, add appropriate "ppm of range" adder from "RMS Noise" table.
Includes rear panel Analog Backplane connector and transducer conversion. Refer to DC Notes for additional card uncertainties.

Function	Range ${ }^{1}$	Resolution	Test Current or Burden Voltage	Input Resistance or Open Circuit Voltage ${ }^{2}$	Accuracy: \pm (ppm of reading + ppm of range) (ppm = parts per million) (e.g., $10 \mathrm{ppm}=\mathbf{0 . 0 0 1 \%}$)			Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
					24 Hour 3 $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	
Voltage ${ }^{4}$	$100.00000 \mathrm{mV}^{19}$	$0.01 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$10+9$	$25+9$	$30+9$	$(1+5) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \quad \mathrm{~V}^{19}$	$0.1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$7+2$	$25+2$	$30+2$	$(1+1) /{ }^{\circ} \mathrm{C}$
	10.000000 V	$1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$ or $10 \mathrm{M} \Omega \pm 1 \%$	$7+2$	$20+2$	$25+2$	$(1+1) /{ }^{\circ} \mathrm{C}$
	100.00000 V	$10 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
	300.00000 V	$100 \quad \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
Resistance ${ }^{\text {5,6,7 }}$	1.0000000Ω	$0.1 \mu \Omega$	10 mA	8.2 V	$15+80$	$40+80$	$60+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$1 \mu \Omega$	10 mA	8.2 V	$15+9$	$40+9$	$60+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$10 \mu \Omega$	1 mA	13.9 V	$15+9$	$40+9$	$60+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{k} \Omega$	$100 \mu \Omega$	1 mA	13.9 V	$20+4$	$45+4$	$65+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	9.1 V	$15+4$	$40+4$	$60+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{k} \Omega^{4}$	$10 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	14.7 V	$20+4$	$45+4$	$65+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{M} \Omega^{4}$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	14.7 V	$25+4$	$50+4$	$70+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{M} \Omega$	1Ω	$0.64 \mu \mathrm{~A} / 10 \mathrm{M} \Omega$	6.4 V	$150+6$	$200+10$	$400+10$	$(70+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{M} \Omega$	10Ω	$0.64 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	6.4 V	$800+30$	$2000+30$	$2000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$
Dry Circuit Resistance ${ }^{6,8}$	1.0000000Ω	$1 \mu \Omega$	10 mA	27 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$10 \mu \Omega$	1 mA	20 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$100 \mu \Omega$	$100 \mu \mathrm{~A}$	20 mV	$25+80$	$90+80$	$140+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	20 mV	$25+80$	$180+80$	$400+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$2.0000000 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mu \mathrm{~A}$	20 mV	$25+80$	$320+80$	$800+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
Continuity (2W)	$1.000 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	13.9 V	$40+100$	$100+100$	$100+100$	$(8+1) /{ }^{\circ} \mathrm{C}$
Current ${ }^{9}$	$10.000000 \mu \mathrm{~A}$	1 pA	$<61 \mathrm{mV}$		$40+30$	$300+30$	$500+30$	$(35+5) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mu \mathrm{~A}$	10 pA	$<105 \mathrm{mV}$		$50+9$	$300+9$	$500+9$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 mA	100 pA	$<130 \mathrm{mV}$		$50+9$	$300+9$	$500+9$	$(50+5) /{ }^{\circ} \mathrm{C}$
	10.000000 mA	1 nA	$<150 \mathrm{mV}$		$50+9$	$300+9$	$500+9$	$(50+5) /{ }^{\circ} \mathrm{C}$
	100.00000 mA	10 nA	<0.4 V		$50+9$	$300+9$	$500+9$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 A	100 nA	<0.6 V		$200+10$	$500+10$	$800+10$	$(50+5) /{ }^{\circ} \mathrm{C}$
	3.0000000 A	$1 \mu \mathrm{~A}$	<1.8 V		$1000+15$	$1200+15$	$1200+15$	$(50+5) /{ }^{\circ} \mathrm{C}$

TEMPERATURE

(Displayed in ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, or K . Exclusive of probes errors.)
THERMOCOUPLES (Accuracy based on ITS-90):

			90 Day/1 Year, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$				
Type	Range	Resolution	Relative to simulated reference junction	Using 3720 or 3721 Cards	Range	Using 3720 or 3721 Cards	Coefficient $0^{\circ}-18^{\circ} \mathrm{C} \text { and } 28^{\circ}-50^{\circ} \mathrm{C}$
J	-150 to $+760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
K	-150 to $+1372^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	-100 to $+1300^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
T	-100 to $+400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
E	-150 to $+1000^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
R	+400 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
S	+400 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
B	+1100 to $+1820^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	+350 to $+1100^{\circ} \mathrm{C}$	$2.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

4-WIRE RTD OR 3-WIRE RTD (100W platinum [PT100], D100, F100, PT385, PT3916, or user 0W to 10kW) (Selectable Offset compensation On or Off): For 3-wire RTD, dmm.connect=dmm.CONNECT_FOUR_WIRE, $\leq 0.1 \mathrm{~W}$ lead resistance mismatching in Input HI and LO. Add $0.25^{\circ} \mathrm{C} / 0.1 \mathrm{~W}$ of lead resistance mismatch.

4-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.06{ }^{\circ} \mathrm{C}$	$0.003{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
3-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.75{ }^{\circ} \mathrm{C}$	$0.003{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
THERMISTOR: $2.2 \mathrm{~kW}, 5 \mathrm{~kW}$, and 10 kW .				
	-80 to $+150^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.08{ }^{\circ} \mathrm{C}$	$0.002{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

System Switch/Multimeter and Plug-In Cards

DC SPEEDS VS. RMS NOISE ${ }^{10,11}$
Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

RMS Noise ${ }^{16}$, PPM of Range
RMS Noise Calculator:
Add $2.5 \times$ "RMS Noise" to "ppm of range" (e.g., $10 \mathrm{~V} @ 0.006$ PLC)
"ppm of range" $=2.5 \times 7.0 \mathrm{ppm}+2 \mathrm{ppm}$

Measurements into Buffer (rdgs/s) ${ }^{13}$

Function	NPLC	Aperture (ms)	Digits
DCV	5^{14}	83.3 (100)	71/2
	$1{ }^{14}$	16.7 (20)	$71 / 2$
	$0.2^{12,14}$	3.33 (4.0)	61/2
	$0.2{ }^{14}$	3.33 (4.0)	$6^{1 / 2}$
	$0.06{ }^{15}$	1.0 (1.2)	51/2
	$0.006{ }^{15}$	0.100 (0.120)	41/2
	0.0005^{15}	0.0083 (0.001)	31/2

System Switch/Multimeter and Plug-In Cards

SYSTEM PERFORMANCE 13, 14			
3112 -Digit Mode, Azero off, nPLC $=0.0005$			
Function	Function Change (ms)	Range Change (ms)	Auto-range (ms)
DCV or 2W Ω ($<10 \mathrm{k} \Omega$)	10	10	10
$4 \mathrm{~W} \Omega$ (<10k Ω)	20	20	20
DCI	10	10	10
Frequency or Period	22	10	-
ACV or ACI ${ }^{17}$	85	85	300
Buffer Transfer Speed	Eth	et GPIB	USB
Average for 1000 reading		2000/s	1800/s
Average for 1000 reading	estamp 23	1800/s	1600/s

Single Command Excecution Time (ms)

		Excecution Time (ms)		
Card	Command	Ethernet	GPIB	USB
$\mathbf{3 7 2 0}, \mathbf{3 7 2 1}$, $\mathbf{3 7 2 2}, \mathbf{3 7 3 0}$	channel.close (ch_list) or channel.open (ch_list)	5.7	5.8	6.1
$\mathbf{3 7 2 3}{ }^{18}$	channel.close (ch_list) or channel.open (ch_list)	2.3	2.4	2.7
$\mathbf{3 7 4 0}$	channel.close (ch_list 1-28) or channel.open (ch_list 1-28)	10.7	10.8	11.1
	channel.close (ch_list 29-32) or channel.open (ch_list 29-32)	22.7	22.8	23.1

DC MEASUREMENT CHARACTERISTICS

DC VOLTS

A-D LINEARITY: 1.0 ppm of reading +2.0 ppm of range.
INPUT IMPEDANCE: $100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$.
100V-300V Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
INPUT BIAS CURRENT: $<50 \mathrm{pA}$ at $23^{\circ} \mathrm{C}$ with dmm.autozero $=\mathrm{dmm}$.OFF or dmm.inputdivider $=\mathrm{dmm}$.ON.
COMMON MODE CURRENT: <500nA p-p for $\leq 1 \mathrm{MHz}$
AUTOZERO OFF ERROR: For DCV $\pm 1^{\circ} \mathrm{C}$ and <10 minutes, add $\pm(8 \mathrm{ppm}$ of reading $+5 \mu \mathrm{~V})$. INPUT PROTECTION: 300V all ranges.
COMMON MODE VOLTAGE: 300 V DC or 300 Vrms (425 V peak for AC waveforms) between any terminal and chassis

RESISTANCE

MAX. $4 \mathrm{~W} \Omega$ LEAD RESISTANCE: 5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega \rightarrow$ $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
MAX. $4 \mathrm{~W} \Omega$ LEAD RESISTANCE (DRY CKT): 0.5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega \rightarrow 100 \Omega$ ranges; 50Ω per lead for $1 \mathrm{k} \Omega \rightarrow 2 \mathrm{k} \Omega$ ranges.
INPUT IMPEDANCE: $1 \Omega-100 \Omega$ Ranges: $99 \mathrm{k} \Omega \pm 1 \% / /<1 \mu$ F. $1 \mathbf{k} \Omega-2 \mathbf{k} \Omega$ Ranges: $10 \mathrm{M} \Omega \pm 1 \% / /<0.015 \mu \mathrm{~F}$.
OFFSET COMPENSATION: Selectable on $4 \mathrm{~W} \Omega 1 \Omega \rightarrow 10 \mathrm{k} \Omega$ ranges.
OPEN LEAD DETECTOR: Selectable per channel. $1.5 \mu \mathrm{~A}, \pm 20 \%$ sink current per DMM SHI and SLO lead. Default on.
CONTINUITY THRESHOLD: Adjustable 1 to 1000Ω
AUTOZERO OFF ERROR: For $2 \mathrm{~W} \Omega \pm 1^{\circ} \mathrm{C}$ and <10 minutes, add $\pm(8 \mathrm{ppm}$ of reading $+0.5 \mathrm{~m} \Omega$) for 10Ω and $5 \mathrm{~m} \Omega$ for all other ranges.
INPUT PROTECTION: 300 V all ranges.

DC CURRENT

AUTOZERO OFF ERROR: For $\pm 1^{\circ} \mathrm{C}$ and <10 minutes, add $\pm(8 \mathrm{ppm}$ of reading + range error $)$ Refer to table below.

Range	$\mathbf{3 A}$	$\mathbf{1 A}$	$\mathbf{1 0 0} \mathbf{m A}$	$\mathbf{1 0} \mathbf{m A}$	$\mathbf{1} \mathbf{m A}$	$\mathbf{1 0 0} \mathbf{\mu A}$	$\mathbf{1 0} \boldsymbol{\mu A}$
Shunt Resistance guarantee by design	0.1Ω	0.1Ω	1Ω	10Ω	100Ω	$1 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$
Burden Voltage	$<1.8 \mathrm{~V}$	$<0.6 \mathrm{~V}$	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$
Burden Voltage with 3721 card	$<2.4 \mathrm{~V}$	$<1.2 \mathrm{~V}$	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$
Autozero OFF "of range" Error	$50 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	50 nA	5 nA	0.85 nA

INPUT PROTECTION: 3A, 250V fuse.

THERMOCOUPLES

CONVERSION: ITS-90.
REFERENCE JUNCTION: Internal, External, or Simulated (Fixed).
OPEN LEAD DETECTOR: Selectable per channel. Open $>1.15 \mathrm{k} \Omega \pm 50 \Omega$. Default on.
COMMON MODE ISOLATION: 300 V DC or 300 Vrms (425 V peak for AC waveforms), $>10 \mathrm{G} \Omega$ and
$<350 \mathrm{pF}$ any terminal to chassis.

Series 3700

System Switch/Multimeter and Plug-In Cards

DC NOTES

1. 20% overrange except 1% on 300 V range and 3.33% on 3 A range.
2. $\pm 5 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance DMM, $>10 \mathrm{G} \Omega \mathrm{DMM}$ on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges). Refer to table for other $2 \mathrm{~W} / 4 \mathrm{~W}$ configurations. For Dry Circuit, $+20 \%,<1 \mathrm{mV}$ with dmm.offsetcompensation=ON for $100 \Omega \rightarrow$ $2 \mathrm{k} \Omega$ ranges.

Range	$\mathbf{2 W}$	$\mathbf{4 W}$	$\mathbf{4 W}$-Kelvin	Ocomp 4W	Ocomp 4W-Kelvin
$\mathbf{1}, \mathbf{1 0} \Omega$	8.2 V	8.2 V	8.2 V	12.1 V	12.1 V
$\mathbf{1 0 0} \mathbf{1} \mathbf{k} \Omega$	13.9 V	14.1 V	13.9 V	15.0 V	12.7 V
$\mathbf{1 0} \Omega$	9.1 V	9.1 V	9.1 V	0.0 V	0.0 V
$\mathbf{1 0 0 k}, \mathbf{1 M} \Omega$	12.7 V	$\mathbf{1 4 . 7 \mathrm { V }}$	12.7 V	-	-
$\mathbf{1 0 M}, \mathbf{1 0 0 M} \Omega$	6.4 V	6.4 V	6.4 V	-	-

Relative to calibration accuracy
4. Add the following additional uncertainty:

Card	DCV "of range"	$\mathbf{1 0 0} \mathbf{~} \Omega$ "of reading + of range"	$\mathbf{1 M} \mathbf{M} \Omega$ "of reading"
$\mathbf{3 7 2 0}, \mathbf{3 7 2 1}, \mathbf{3 7 3 0}$	$4.5 \mu \mathrm{~V}$	$8 \mathrm{ppm}+7 \mathrm{ppm}$	8 ppm
$\mathbf{3 7 2 2}$	$4.5 \mu \mathrm{~V}$	$8 \mathrm{ppm}+7 \mathrm{ppm}$	8 ppm
$\mathbf{3 7 2 3}$	$6 \mu \mathrm{~V}$	$8 \mathrm{ppm}+7 \mathrm{ppm}$	8 ppm

5. Specifications are for 4 -wire $\Omega, 1 \rightarrow 100 \Omega$ with offset compensation on. Series 3700 plug-in cards with $\mathrm{L}_{\mathrm{syv}}$ and offset compensation on. 2-wire Ω specifications are for dmm.connect=dmm.CONNECT ALL.
For 2 -wire Ω, add the following to "ppm of range" uncertainty:
$700 \mathrm{~m} \Omega$ with dmm.connect $=\mathrm{dmm}$.CONNECT_TWO_WIRE, $100 \mathrm{~m} \Omega$ with REL, and 1.5Ω without REL. 1Ω range is 4 -wire only.
6. Test current with dmm.offsetcompensation=OFF, $\pm 5 \%$.

Add the following to "ppm of reading" uncertainty when using Series 3700 Plug-in Cards in Operating Environment $\geq 50 \% \mathrm{RH}$.

Card	$\mathbf{1 0} \mathbf{~ k} \Omega$	$\mathbf{1 0 0} \mathbf{~ k} \Omega$	$\mathbf{1 ~ M} \Omega$	$\mathbf{1 0} \mathbf{M} \Omega$	$\mathbf{1 0 0} \mathbf{M} \Omega$
3720, 3721, 3730 with MTC D-Shell connector 3722, 3723 and 3720, 3721, 3730 with -ST screw terminal module	1 ppm	10 ppm	0.01%	0.1%	1%

Series 3700 Plug-in Cards Operating Environment: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, \leq 70 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
8. For 4-wire Ω only, offset compensation and $\mathrm{L}_{\mathrm{SYNC}}$ on. For Models 3722 and $3723,10 \Omega \rightarrow 2 \mathrm{k} \Omega$ ranges only.
9. Includes Analog Backplane 15 -pin rear panel connector. For 3721, refer to DC Current table for additional uncertainties.
10 . For $\mathrm{L}_{\mathrm{SYNC}}$ On, line frequency $\pm 0.1 \%$.

	nPLC	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{0 . 2}$	$<\mathbf{0 . 2}$
$\mathbf{L}_{\text {SYNC }}$ On	NMRR	110 dB	90 dB	70 dB	-
$\mathbf{L}_{\text {sYNC }}$ Off	NMRR	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	-	-

11. For $1 \mathrm{k} \Omega$ unbalance in LO lead. AC CMRR is 70 dB .

$\mathbf{n P L C}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{0 . 2}{ }^{12}$	$\leq \mathbf{0 . 2}$
CMRR	140 dB	140 dB	120 dB	80 dB

12. For $\mathrm{L}_{\mathrm{SYNC}}$ On.
13. Reading rates are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions dmm.reset("all"), Autorange off, Limits off, dmm.autodelay=dmm.OFF, dmm.opendetector=dmm.OFF, format.data.=format. SREAL, DCV $=10 \mathrm{~V}, 2 \mathrm{~W} / 4 \mathrm{~W}=1 \mathrm{k} \Omega, \mathrm{DCI}=1 \mathrm{~mA}$, Dry-Ckt $=10 \Omega, \mathrm{ACI}=1 \mathrm{~mA}$, and $\mathrm{ACV}=1 \mathrm{~V}$. For Dry-Ckt 100Ω and $2 \mathrm{k} \Omega, 60 \mathrm{rdg} / \mathrm{s}$ max. with offset compensation OFF and $29.5 \mathrm{rdg} / \mathrm{s}$ max. with offset compensation ON. For temperature reading rates use DCV for T/C, $2 \mathrm{~W} \Omega$ for Thermistor, and $4 \mathrm{~W} \Omega$ for RTD. Speeds are typical and include measurements and binary data transfer out the Ethernet, GPIB, or USB.
14. DMM configured for single reading, dmm.measurecount $=1$, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
15. DMM configured for multisample readings and single buffer transfer, dmm.measurecount $=1000$, buf $=$ dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000 ,buf).
16. dmm.autozero $=\mathrm{dmm}$.ON. RMS noise using low thermal short for $\mathrm{DCV}, 2 \mathrm{~W} \Omega, 4 \mathrm{~W} \Omega$, and Dry-Ckt Ω. For DCI, dmm.connect $=$ dmm.CONNECT_NONE or 0 . Includes Model 3721 card accuracies. RMS noise values are typical.
17. For DC, dmm.nplc $=0.0005$. For AC, dmm.detectorbandwidth $=300$, dmm.nplc $=0.0005$. For $\mathrm{ACI}, \mathrm{dmm}$ autodelay $=\mathrm{dmm} . \mathrm{ON}(50 \mathrm{~ms})$, max rate is 50 ms and ACV dmm.autodelay $=\mathrm{dmm}$.ON $(50 \mathrm{~ms})$, max rate is 50 ms .
18. Speeds are within same multiplexer bank. Add an additional 8 ms when changing banks or slots.
19. When properly zeroed using REL function.

AC Specifications

Function	Range ${ }^{1}$	Resolution	Calibration Cycle	Accuracy: \pm (\% of reading + \% of range) $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
				$3 \mathrm{Hz-5} \mathrm{~Hz}$	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	$10 \mathrm{~Hz} \mathrm{-20} \mathrm{kHz}$	$20 \mathrm{kHz-50} \mathrm{kHz}$	$50 \mathrm{kHz-100} \mathrm{kHz}$	$100 \mathrm{kHz-300} \mathrm{kHz}$
Voltage ${ }^{2}$	100.0000 mV	$0.1 \mu \mathrm{~V}$	$\begin{gathered} 90 \text { Day } \\ \text { (all ranges) } \end{gathered}$	$1.0+0.03$	$0.30+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	1.000000 V	$1 \mu \mathrm{~V}$							
	10.00000 V	$10 \mu \mathrm{~V}$	1 Year (all ranges)	$1.0+0.03$	$0.30+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$
	100.0000 V	$100 \mu \mathrm{~V}$							
	300.0000 V	1 mV							
			Temp. Coeff. $/{ }^{\circ} \mathrm{C}^{3}$	$0.010+0.003$	$0.030+0.003$	$0.005+0.003$	$0.006+0.005$	$0.01+0.006$	$0.03+0.01$
Current ${ }^{2}$				$3 \mathrm{Hz-5} \mathrm{~Hz}$	$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	10Hz -2 kHz	$2 \mathbf{k H z - 5} \mathbf{~ k H z}$	$5 \mathbf{k H z} \mathbf{- 1 0} \mathbf{~ k H z}$	
	$1.000000 \mathrm{~mA}^{8}$	1 nA	90 Day/1 Year (all ranges)	$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	10.00000 mA	10 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	100.0000 mA	100 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	1.000000 A	$1 \mu \mathrm{~A}$		$1.0+0.04$	$0.30+0.04$	$0.20+0.03$	$0.88+0.04$	$2.0+0.04$	
	3.000000 A	$10 \mu \mathrm{~A}$		$1.0+0.04$	$0.30+0.04$	$0.20+0.03$	$0.88+0.04$	$2.0+0.04$	
			Temp. Coeff. $/{ }^{\circ} \mathrm{C}^{3}$	$0.10+0.004$	$0.030+0.004$	$0.005+0.003$	$0.006+0.005$	$0.006+0.005$	
Frequency ${ }^{4}$ and Period				Accuracy: \pm (ppm of reading + offset ppm)					
				$3 \mathrm{Hz-500} \mathrm{kHz}$	$3 \mathrm{Hz-500} \mathbf{~ k H z}$	$333 \mathrm{~ms}-2 \mu \mathrm{~s}$			
	$\begin{gathered} 100.0000 \mathrm{mV} \\ \text { to } \\ 300.0000 \mathrm{~V} \end{gathered}$	0.333 ppm	90 Day/1 Year (all ranges)	$80+0.333$	$80+0.333$	(SLOW, 0.25 s gate)			
		3.33 ppm		$80+3.33$	$80+3.33$	(MED, 100ms gate)			
		33.3 ppm		$80+33.3$	$80+33.3$	(FAST, 10ms gate)			

ADDITIONAL UNCERTAINTY \pm (\% of reading)

Detectorbandwidth

Low Frequency Uncertainty	Detectorbandwidt		
	$\begin{gathered} 3 \text { (SLOW) } \\ 3 \text { Hz-300 kHz } \end{gathered}$	$\begin{gathered} 30 \text { (MED) } \\ 30 \mathrm{~Hz}-\mathbf{3 0 0} \mathrm{kHz} \end{gathered}$	$\begin{gathered} 300 \text { (FAST) } \\ 300 \mathrm{~Hz}-300 \mathrm{kHz} \end{gathered}$
$20 \mathrm{~Hz}-30 \mathrm{~Hz}$	0	0.3	-
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$	0	0	-
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0	4.0
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0	0.72
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0	0.18
$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	0	0	0.07
$>500 \mathrm{~Hz}$	0	0	0

1.888.KEITHLEY (u.s. only)

Crest Factor ${ }^{5}$
Maximum Crest Factor: 5 at full-scale

Additional Uncertainty $\pm(\%$ of reading)	Detectorbandwidth	Maximum Crest Factor: 5 at full-scale			
		1-2	2-3	3-4	4-5
$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	3	0.50	1.20	1.30	1.40
$10 \mathrm{~Hz}-30 \mathrm{~Hz}$	3	0.20	0.30	0.60	0.90
$30 \mathrm{~Hz}-100 \mathrm{~Hz}$	3 or 30	0.20	0.30	0.60	0.90
$>100 \mathrm{~Hz}$	3 or 30	0.05	0.15	0.30	0.40
$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	300 only	0.50	1.20	1.30	1.40
$\geq 500 \mathrm{~Hz}$	300 only	0.05	0.15	0.30	0.40

Series 3700

System Switch/Multimeter and Plug-In Cards

AC SPEEDS

Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz}$) Operation			Measurements into Buffer ${ }^{13}$ (rdg/s)			Measurement to PC ${ }^{13}$ (ms/rdg)		
Function	NPLC	Aperture (ms)	Digits	Azero On	Azero Off	Ethernet	GPIB	USB
ACI / ACV	SLOW	N/A	61/2	0.45 (0.45)	N/A	2150 (2150)	2150 (2150)	2150 (2150)
	MED	N/A	$61 / 2$	2.5 (2.5)	N/A	400 (400)	400 (400)	400 (400)
	$1.0{ }^{14}$	16.67 (20)	$61 / 2$	42 (33)	59.5 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
	$0.2{ }^{14}$	3.33 (4.0)	61/2	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	51/2	170 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	$0.0005{ }^{15}$	0.0083 (0.001)	$31 / 2$	218 (215)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
Frequency/ Period	N/A	SLOW, MED, FAST	N/A	$\begin{gathered} \hline 2 \times \text { input period }+ \\ \text { gate time } \\ \hline \end{gathered}$	N/A	$2 \times$ input period + gate time +2.7 ms	$2 \times$ input period + gate time +2.8 ms	$2 \times$ input period + gate time +3.1 ms

AC MEASUREMENT CHARACTERISTICS

AC VOLTS

MEASUREMENT METHOD: AC-coupled, True RMS.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \% / /$ by $<150 \mathrm{pF}$.
INPUT PROTECTION: 300VDC or 300 Vrms rear inputs or 37 xx cards.

AC CURRENT

MEASUREMENT METHOD: AC-coupled, True RMS.

Range	$\mathbf{3} \mathbf{A}$	$\mathbf{1} \mathbf{A}$	$\mathbf{1 0 0} \mathbf{~ m A}$	$\mathbf{1 0} \mathbf{~ m A}$	$\mathbf{1} \mathbf{~ m A}$
Shunt Resistance ${ }^{7}$	0.1Ω	0.1Ω	1.0Ω	10Ω	100Ω
Burden Voltage Rear Panel	$<1.8 \mathrm{~V} \mathrm{rms}$	$<0.6 \mathrm{~V} \mathrm{rms}$	$<0.4 \mathrm{~V} \mathrm{rms}$	$<150 \mathrm{mV} \mathrm{rms}$	$<125 \mathrm{mV} \mathrm{rms}$
Burden Voltage 3721 Card	$<2.4 \mathrm{~V} \mathrm{rms}$	$<1.0 \mathrm{~V} \mathrm{rms}$	$<0.6 \mathrm{~V} \mathrm{rms}$	$<200 \mathrm{mV} \mathrm{rms}$	$<130 \mathrm{mV} \mathrm{rms}$

INPUT PROTECTION: 3A, 250V fuse.

FREQUENCY AND PERIOD

MEASUREMENT METHOD: Reciprocal Counting technique.
GATE TIME: SLOW 0.25 s , MED 100 ms , and FAST 10 ms (dmm.aperture $=0.25,0.1$, or 0.01).

AC GENERAL

AC CMRR ${ }^{6}$: 70dB.
VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7}$ Volt Hz (guaranteed by design), $\leq 2.1 \times 10^{7}$ Volt Hz verified. Input frequency verified for $\leq 3 \times 10^{5} \mathrm{~Hz}$.

AC NOTES

1. 20% overrange except 1% on 300 V and 3.33% on 3 A . Default resolution is $51 / 2$ digits, maximum useable resolution is $61 / 2$ with $71 / 2$ digits programmable
2. Specification are for SLOW mode and sinewave inputs $>5 \%$ of range. SLOW and MED are multi-sample A / D conversions. FAST is dmm.detectorbandwidth $=300$ with dmm.nplc $=1.0$.
3. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
4. Specified for square wave inputs. Input signal must be $>10 \%$ of ACV range. If input is $<20 \mathrm{mV}$ on the 100 mV range then the frequency must be $>10 \mathrm{~Hz}$. For sinewave inputs, frequency must be $>100 \mathrm{~Hz}$.
5. Applies to non-sinewave inputs $\geq 5 \mathrm{~Hz}$
6. For $1 \mathrm{k} \Omega$ unbalance in LO lead.
7. Shunt resistance guaranteed by design.
8. For Model $3721,1 \mathrm{~mA} \mathrm{ACI}$, add 0.05% to "of reading" uncertainty from $250 \mathrm{~Hz} \rightarrow 10 \mathrm{kHz}$.

System Switch/Multimeter and Plug-In Cards

GENERAL SPECIFICATIONS

EXPANSION SLOTS: 6.
POWER LINE: Universal, 100 V to 240 V .
LINE FREQUENCY: 50 Hz and 60 Hz , automatically sensed at power-up.
POWER CONSUMPTION: 28VA with DMM and display, up to 140VA with six 37 xx cards.
REAL TIME CLOCK: Battery backed, 10 years typical life.
WARRANTY: 1 year.
EMC: Conforms to European Union Directive 2004/108/EC EN61326-1.
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1.
VIBRATION: MIL-PRF-28800F Class 3, Random.
WARM-UP: 2 hours to rated accuracy.
DIGITAL I/O: 25 -pin female D-shell.

	1/0 1-9	1/0 10-14	Vext
$\mathrm{I}_{\text {SINK }}$, max.	5 mA	250 mA	-
Absolute $\mathrm{V}_{\text {IN }}$	5.25 V to -0.25 V	5.25 V to -0.25 V	5 V to 33 V
$\mathrm{V}_{\text {IH }} \mathrm{min}$	2.2 V	2.2 V	-
$\mathrm{V}_{\text {II }}$ max	0.7 V	0.7 V	-
$\mathrm{V}_{\text {OL }}$ max at $\mathrm{I}_{\text {sink }}$ max	0.7 V	0.7 V	-
$\mathrm{V}_{\mathrm{OH}} \mathrm{min}, 0.4 \mathrm{~mA}$ source	2.7 V	2.4 V	-
Min $\mathrm{V}_{\text {IV }}$ pulse	$2 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	-
Min V_{0} pulse	$1 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	-

1/0 1-9

1/0 10-14

TRIGGERING AND MEMORY
Window Filter Sensitivity: $0.01 \%, 0.1 \%, 1 \%, 10 \%$, or full-scale of range (none).
Trigger Delay: 0 to 99 hrs. ($10 \mu \mathrm{~s}$ step size).
External Trigger Delay: $<10 \mu \mathrm{~s}$.
Memory: Up to 650,000 time-stamped readings with Web page disabled. Additional memory available with external "thumb drive."
Non-volatile Memory: Single user save setup, with up to 75 DMM configurations and ≥ 600 channel patterns (dependent on name length, DMM function and configuration, and pattern image size). Additional memory available with external "thumb drive."
MATH FUNCTIONS: Rel, dB , Limit Test, $\%, 1 / \mathrm{x}$, and $\mathrm{mX}+\mathrm{b}$ with user defined units displayed.
REMOTE INTERFACE:
Ethernet: RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX.
GPIB: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology.
USB Device (rear panel, type B): Full speed, USBTMC compliant.
USB Host (front panel, type A): USB 2.0, support for thumb drives.
LXI COMPLIANCE: LXI Class B with IEEE 1588 precision time protocol.
LXI TIMING (applies to scanning) and SPECIFICATION:
Receive LAN[0-7] Event Delay: $600 \mu \mathrm{~s}$ min, $800 \mu \mathrm{~s}$ typ., n/s (not specified) max.
Alarm to Trigger Delay: $25 \mu \mathrm{~s}$ min., $50 \mu \mathrm{~s}$ typ., n / s (not specified) max.
Generate LAN[0-7] Event: $750 \mu \mathrm{~s}$ min., $1000 \mu \mathrm{~s}$ typ., n / s (not specified) max. (minimums are probabilistic and represent a 95% confidence factor).
Clock Accuracy: 25 ppm .
Synchronization Accuracy: <150ns (probabilistic and represents a 95% confidence factor).
Timestamp Accuracy: $100 \mu \mathrm{~s}$.
Timestamp Resolution: 20ns.
LANGUAGE: Embedded Test Script Processor (TSP) accessible from any host interface. Responds to individual Instrument Control Library (ICL) commands. Responds to high-speed test scripts comprised of ICL commands and Test Script Language (TSL) statements (e.g., branching, looping, math, etc.). Able to execute high-speed test scripts stored in memory without host intervention.
IP CONFIGURATION: Static or DHCP.
PASSWORD PROTECTION: 11 characters
MINIMUM PC HARDWARE: Intel Pentium 3, 800 MHz , 512Mbyte RAM, 210Mbyte disk space or better.
OPERATING SYSTEMS/SOFTWARE: Windows 2000 and XP compatible, supports Web browsers with Java plug-in (requires Java plug-in 1.6 or higher). Web pages served by 3706 .
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}, \leq 80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$, altitude up to 2000 meters.
STORAGE ENVIRONMENT: -40° to $70^{\circ} \mathrm{C}$.
DIMENSIONS:
Rack Mounted: 89 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($3.5 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.).
Bench Configuration (includes handle and feet): 104 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($4.125 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.)
SHIPPING WEIGHT: $13 \mathrm{~kg}(28 \mathrm{lbs})$

Series 3700

System Switch/Multimeter and Plug-In Cards

Specifications for Plug-In Cards

Additional Series 3700 cards are currently in development. For a current list of cards and specifications, visit www.keithley.com.

	3720	3721	3722	3723	3730	3740
No. of Channels	60 (Dual 1×30)	40 (dual 1×20)	96 (dual 1×48)	60 (dual 1×30) or 120 single pole (dual 1×60)	6×16	32
Card Config.	Multiplexer	Multiplexer	Multiplexer	Multiplexer	Matrix	Independent
Type of Relay	Latching electromechanical	Latching electromechanical	Latching electromechanical	Dry reed	Latching electromechanical	Latching electromechanical
Contact Configuration	2 Form A	2 Form A	2 Form A	1 Form A	2 Form A	28 Form C, 4 Form A
Max. Voltage	300 V	$\begin{gathered} 300 \mathrm{~V}(\text { ch } 1-40), \\ 60 \mathrm{~V}(\mathrm{ch} 41-42) \end{gathered}$	300 V	200 V	300 V	300 VDC/250 VAC (Form A)
Max. Current Switched	1 A	$\begin{aligned} & 2 \mathrm{~A}(\text { ch } 1-40), \\ & 3 \mathrm{~A}(\text { ch } 41-42) \end{aligned}$	1 A	1 A	1 A	2 A (Form C), 7 A (Form A)
Comments	2 independent 1×30 multiplexers. Automatic temperature reference with screw terminal accessory (Model 3720-ST)	2 independent 1×20 multiplexers. Automatic temperature reference with screw terminal accessory (Model 3721-ST)	2 independent 1×48 multiplexers	2 independent 1×30 multiplexers	Columns can be expanded through the backplane or isolated by relays	32 general purpose independent channels.

Plug-in Card Accessories

	3720	3721	3722	3723	3730	3740
Cables	$\begin{gathered} \text { 3720-MTC-1.5, } \\ 3720-\mathrm{MTC}-3 \end{gathered}$	$\begin{gathered} \text { 3721-MTC-1.5, } \\ \text { 3721-MTC-3 } \end{gathered}$	$\begin{gathered} 3722-\mathrm{MTC}-1.5, \\ 3722-\mathrm{MTC}-3 \end{gathered}$	$\begin{gathered} \text { 3720-MTC-1.5, } \\ 3720-\mathrm{MTC}-3 \end{gathered}$	$\begin{gathered} \text { 3721-MTC-1.5, } \\ \text { 3721-MTC-3 } \end{gathered}$	$\begin{gathered} \text { 3721-MTC-1.5, } \\ \text { 3721-MTC-3 } \end{gathered}$
Screw Terminal Block	$3720-\mathrm{ST}$	$3721-\mathrm{ST}$		3723-ST, 3723-ST-1	3730-ST	$3740-\mathrm{ST}$
Connector Kits	3791-KIT78-R	3790-KIT50-R	3792-KIT104-R	3791-KIT78-R	3790-KIT50-R	3790-KIT50-R
Tools	3791-CIT		3791-CIT	3791-CIT		

3720

- 60 two-pole channels or 30 four-pole channels for general purpose switching
- Automatic CJC for temperature measurements with 3720-ST accessory
- Analog backplane connection relays provide easy bank and card interconnections
- 300V, 1A switched or 2A carry signal capacity; 60W, 125VA
- Screw terminal connections provided with removable 3720-ST accessory
- Relay closures stored in onboard memory
- Latching electromechanical relays

Ordering Information

3720

Dual 1×30 Multiplexer Card

Dual 1×30 Multiplexer Card

60 differential channels, automatic CJC w/3720-ST accessory

The Model 3720 offers two independent banks of 1×30 two-pole multiplexers. It is ideal for general purpose switching, including temperature measurements. The two banks can automatically be connected to the Series 3700 mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card to a single 1×60 two-pole multiplexer or to enable card-to-card expansion for even larger configurations.
Other features of the Model 3720 include its ability to be reconfigured to coordinated four-pole operation for additional measurement flexibility. Furthermore, the Model 3720 supports thermo-couple-type temperature measurements with the Model 3720-ST (screw terminal) accessory providing automatic cold junction compensation (CJC).

The Model 3720 uses two 78 -pin male D-sub connectors for signal connections. For screw terminal or automatic CJC, use the detachable Model 3720-ST accessory.

ACCESSORIES AVAILABLE
3720-MTC-1.5 78 Pin D-sub Female to Male Cable, 1.5 m (5 ft) 3720-MTC-3 $\quad 78$ Pin D-sub Female to Male Cable, 3 m (10 ft .)
3720-ST Screw Terminal Block (required for auto CJC thermocouple measurements)
3791-CIT Contact Insertion and Extraction Tool
3791-KIT78-R $\quad 78$ Pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder-cup contacts)
7401 Type K Thermocouple Wire (100 ft)

SERVICES AVAILABLE

3720-3Y-EW-STD 1 -year factory warranty extended to 3 years from date of shipment
3720-5Y-EW-STD 1 -year factory warranty extended to 5 years from date of shipment
C/3720-3Y-STD 3 (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

4π 0
 S J ELECTRONICS power - test \& measurement

08005834455

Tel: +44 1536416200

Fax: 08005835566
sales@sjelectronics.co.uk
www.sjelectronics.co.uk

Dual 1×30 Multiplexer Card

60 differential channels, automatic CJC w/3720-ST accessory

Multiplexer Bank 1
Output 1

Channel 1

Multiplexer Bank 2

MULTIPLEXER CONFIGURATION: Two independent 1×302-pole multiplexers. Banks can be isolated from the backplane by relays. Card can be configured for 2 and 4 wire.
CONTACT CONFIGURATION: 2 pole form A.
CONNECTOR TYPE: Two 78 pin male D-shells.
MODEL 3720-ST SCREW TERMINAL OPTION: \#22 AWG typical wire size with 0.062 inch O.D.
124 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 36 conductors per card maximum.
MAXIMUM SIGNAL LEVEL: Channels 1-60: 300 V DC or RMS, 1 A switched (2A carry), 60W, 125VA COMMON MODE VOLTAGE: 300 V DC or RMS between any terminal and chassis. VOLT-HERTZ LIMIT: 8×10^{7}.
CONTACT LIFE: $>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$

	Dual 1×30^{3}	Single $1 \times 60^{2,3}$
Channel Resistance (end of contact life)	$<1.0 \Omega$	$<1.5 \Omega$
Contact Potential (differential)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 3 \mu \mathrm{~V}$
Offset Current	$< \pm 250 \mathrm{pA}$	$< \pm 250 \mathrm{pA}$
Isolation		
Differential	$10^{9} \Omega, 250 \mathrm{pF}$	$10^{9} \Omega, 450 \mathrm{pF}$
Bank-Bank	$10^{10} \Omega, 75 \mathrm{pF}$	-
Channel-Channel	$10^{9} \Omega, 75 \mathrm{pF}$	$10^{9} \Omega, 75 \mathrm{pF}$
Common Mode	$10^{9} \Omega, 200 \mathrm{pF}$	$10^{9} \Omega, 400 \mathrm{pF}$
Crosstalk Channel-Channel		
300 kHz	$<-60 \mathrm{~dB}$	$<-55 \mathrm{~dB}$
1 MHz	$<-50 \mathrm{~dB}$	$<-50 \mathrm{~dB}$
20MHz:	$<-25 \mathrm{~dB}$	$<-20 \mathrm{~dB}$
$\underline{\text { Bandwidth }}$	30 MHz	10 MHz

TYPICAL SCANNING SPEEDS:
Switch Only ${ }^{4}$: Sequential scanning, single channel, immediate trigger advance: $>120 \mathrm{ch} / \mathrm{s}$.
With Measurements Into Memory ${ }^{5}$:
DCV (10 V range) or 2 W Ohms ($1 \mathrm{k} \Omega$ range): $>110 \mathrm{ch} / \mathrm{s}$.
Thermocouple: $>110 \mathrm{ch} / \mathrm{s}$.
3 - or 4 -Wire RTD: > $100 \mathrm{ch} / \mathrm{s}$.
4-Wire Ohms ($1 \mathrm{k} \Omega$ range): $>100 \mathrm{ch} / \mathrm{s}$.
ACV (10 V range): >110 ch/s.

GENERAL

ACTUATION TIME: 4 ms
TEMPERATURE ACCURACY using Automatic CJC with 3720-ST accessory: $1^{\circ} \mathrm{C}$ for J, K, T and E types (see mainframe specification for details).
RELAY TYPE: Latching electromechanical.
RELAY DRIVE SCHEME: Matrix.
INTERLOCK: Backplane relays disabled when interlock connection is removed
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: 2.5 lbs .
SAFETY: Conforms to European Union Directive 73/23/EEC, EN61010-1.
EMC: Conforms to European Union Directive 2004/108/EC, EN61326-1.

1. Open detector enabled during thermocouple measurements. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.
2. 3706 mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
. Connections made using 3720-ST accessory.
3. Scanning script local to 3706 mainframe, within same bank, and break before make switching
4. 3706 mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay $=0,41 / 2$ digits (NPLC=0.006), for ACV dmm.detectorbandwidth $=300$, for OHMs dmm.offsetcompensation $=$ off, dmm .opendetector $=$ off. Scanning script local to mainframe, sequential scan within same bank (2 pole) or card (4 pole), and break before make switching

3721

- 40 two-pole or 20 four-pole channels for general purpose switching
- 2 dedicated channels for current measurements, 3A capacity
- Automatic CJC for temperature measurements with 3721-ST accessory
- 4-wire common side ohms input supports 40 channels of 4-wire ohms measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 300V, 2A switched or 3A carry signal capacity; 60W, 125VA
- Latching electromechanical relays

Ordering Information

$\begin{array}{ll}3721 & \begin{array}{l}\text { Dual } 1 \times 20 \\ \text { Multiplexer Card }\end{array}\end{array}$

Dual 1×20 Multiplexer Card

40 differential channels, automatic CJC w/3721-ST accessory

The Model 3721 offers two independent banks of 1×20 two-pole multiplexers that are ideal for general purpose switching, including temperature measurements. The two banks can automatically be connected to the Series 3700 mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the Model 3721 as a single 1×40 two-pole multiplexer or to enable card-to-card expansion for even larger configurations.

The Model 3721 provides a number of other features. In addition to the 40 channels, two fused channels are supplied for current measurements. Also, the Model 3721 includes dedicated inputs that enable 40 channels of four-wire common side ohms measurements. For thermocouple type measurements, automatic cold junction compensation (CJC) is supported with the Model 3721-ST (screw terminal) accessory.

The Model 3721 uses two 50 -pin male D-sub connectors for signal connections. For screw terminal or automatic CJC, use the detachable Model 3721-ST accessory.

ACCESSORIES AVAILABLE
3721-MTC-1.5

3721-ST Screw Terminal Block (required for auto CJC thermocouple measurements)
3790-KIT50-R $\quad 50$ Pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder-cup contacts)
7401 Type K Thermocouple Wire (100 ft.)

SERVICES AVAILABLE
3721-3Y-EW-STD 1-year factory warranty extended to 3 years from date of shipment
3721-5Y-EW-STD 1-year factory warranty extended to 5 years from date of shipment
C/3721-3Y-STD 3 (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

S J ELECTRORICS
pOWER - test e measurement
08005834455
Tel: +44 1536416200
Fax: 08005835566
sales@sjelectronics.co.uk
www.sjelectronics.co.uk
1.888.KEITHLEY (u.s. only)

Two pole mode

Four-wire common side ohm mode

MULTIPLEXER CONFIGURATION: Two independent 1×202-pole multiplexers. Banks can be connected together via relay creating a single 1×40 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for common side Ohms measurement via backplane relays. Channel 41-42: Multiplex one of two 2-pole current signals into DMM. CONTACT CONFIGURATION: 2 pole form A.
CONNECTOR TYPE: Two 50 pin male D-shells. Removable screw terminal option.
MAXIMUM SIGNAL LEVEL: Channels $1-40: 300 \mathrm{~V}$ DC or RMS, 2 A switched (3 A carry), $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum. Channels 41-42: 60V DC or 30 V RMS, 3 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$ maximum. Fused $3 \mathrm{~A}, 250 \mathrm{~V}$ RMS.
COMMON MODE VOLTAGE: Channels $\mathbf{1 - 4 0}: 300 \mathrm{~V}$ DC or RMS between any terminal and chassis. VOLT-HERTZ LIMIT: 8×10^{7}.
CONTACT LIFE: $>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$

	Dual $\mathbf{1 \times 2 0}{ }^{\mathbf{3}}$	Single $1 \times 40^{2,3}$
Channel Resistance (end of contact life)	$<1.0 \Omega$	$<1.5 \Omega$
Contact Potential (differential)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 3 \mu \mathrm{~V}$
Offset Current	$< \pm 250 \mathrm{pA}$	$< \pm 250 \mathrm{pA}$
Isolation		
Differential	$10^{9} \Omega, 280 \mathrm{pF}$	$10^{9} \Omega, 530 \mathrm{pF}$
Bank-Bank	$10^{11} \Omega, 60 \mathrm{pF}$	-
Channel-Channel	$10^{9} \Omega, 50 \mathrm{pF}$	$10^{9} \Omega, 50 \mathrm{pF}$
Common Mode	$10^{9} \Omega, 180 \mathrm{pF}$	$10^{9} \Omega, 480 \mathrm{pF}$
Crosstalk Channel-Channel		
300 kHz	$<-60 \mathrm{~dB}$	$<-60 \mathrm{~dB}$
1 MHz	$<-50 \mathrm{~dB}$	$<-50 \mathrm{~dB}$
20MHz:	$<-25 \mathrm{~dB}$	$<-15 \mathrm{~dB}$
Bandwidth	28 MHz	9 MHz

TYPICAL SCANNING SPEEDS:
Switch Only ${ }^{4}$: Sequential scanning, single channel, immediate trigger advance: $>120 \mathrm{ch} / \mathrm{s}$.
With Measurements Into Memory ${ }^{5}$:
DCV (10 V range) or 2 W Ohms ($1 \mathrm{k} \Omega$ range) : $>110 \mathrm{ch} / \mathrm{s}$
Thermocouple: $>110 \mathrm{ch} / \mathrm{s}$.
3- or 4-Wire RTD: $>100 \mathrm{ch} / \mathrm{s}$.
4 -Wire Ohms ($1 \mathrm{k} \Omega$ range): $>100 \mathrm{ch} / \mathrm{s}$.
ACV ($10 \mathrm{~V}, 400 \mathrm{~Hz}$ range) or $\mathrm{ACI}(1 \mathrm{~A}, 400 \mathrm{~Hz}$ range) : $>110 \mathrm{ch} / \mathrm{s}$.

GENERAL

actuation time: 4 ms .
TEMPERATURE ACCURACY using Automatic CJC with 3721-ST accessory: $1^{\circ} \mathrm{C}$ for J, K, T and E types (see mainframe specification for details).
RELAY TYPE: Latching electromechanical.
RELAY DRIVE SCHEME: Direct.
INTERLOCK: Backplane relays disabled when interlock connection is removed.
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$. STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: 2.25 lbs .
SAFETY: Conforms to European Union Directive 73/23/EEC, EN61010-1.
EMC: Conforms to European Union Directive 2004/108/EC, EN61326-1.

1. Open detector enabled during thermocouple measurements. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.
2. 3706 mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Connections made using 3721-ST accessory.
4. Scanning script local to 3706 mainframe, within same bank, and break before make switching.
5. 3706 mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay $=0,4 \frac{1}{2}$ digits (NPLC=0.006), for ACV dmm.detectorbandwidth $=300$, for OHMs dmm.offsetcompensation $=$ off, dmm. opendetector $=$ off. Scanning script local to mainframe, sequential scan within same bank (2 pole) or card (4 pole), and break before make switching.

3722

- 96 two-pole or 48 four-pole channels for general purpose measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 300V, 1A switched or 2A carry signal capacity; 60W, 125VA
- $1 \mu \mathrm{~V}$ and 100pA offsets
- 25MHz bandwidth
- Relay closures stored in onboard memory
- Latching electromechanical relays
- Scan and measure over 110 channels/second

Ordering Information

3722 Dual 1×48, High Density, Multiplexer Card

Dual 1×48, High Density, Multiplexer Card

 96 differential channels, 300 Volts/1 Amp

The Model 3722 offers two independent banks of 1×48 two-pole multiplexers, which is ideal for applications that require a high channel count. The two banks can automatically be connected to the Series 3700 mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card as a single 1×96 two-pole multiplexer or to enable card-to-card expansion for even larger configurations. Another feature of this card is the latching electromechanical relays. They can accommodate $300 \mathrm{~V}, 1 \mathrm{~A}$ switched signal levels.

The Model 3722 uses two 104 -pin D-sub connectors for signal connections. A solder style connector kit (Model 3792-KIT104-R) and pre-assembled cables (Model 3722-MTC-1.5 and 3722-MTC-3) are available for card connections.

ACCESSORIES AVAILABLE

3722-MTC-1.5 104 Pin D-sub Male to Female Cable, $1.5 \mathrm{~m}(5 \mathrm{ft}$.) 3722-MTC-3 104 Pin D-sub Male to Female Cable, 3 m (10 ft .) 3791-CIT Contact Insertion and Extraction Tool
3792-KIT104-R 104 Pin Male D-sub Connector kit (contains 2 male D-sub connectors with housings and 208 solder-cup contacts)

SERVICES AVAILABLE

3722-3Y-EW-STD 1-year factory warranty extended to 3 years from date of shipment
3722-5Y-EW-STD 1-year factory warranty extended to 5 years from date of shipment
C/3722-3Y-STD 3 (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

Mn 0 VUNV

S J ELECTROnICS

power - test \& mersurement
08005834455
Tel: +44 1536416200
Fax: 08005835566
sales@sjelectronics.co.uk
www.sjelectronics.co.uk
1.888.KEITHLEY (u.s. only)

Dual 1×48, High Density, Multiplexer Card
 96 differential channels, 300 Volts/ 1 Amp

Multiplexer Bank 1

Output 1

Multiplexer Bank 2

Output 2

Channel 96

MULTIPLEXER CONFIGURATION: Two independent 1×482-pole multiplexers. Banks can be connected together via relays creating a single 1×96 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for 2 - and 4 -wire mode.
CONTACT CONFIGURATION: 2 pole form A.
CONNECTOR TYPE: Two 104 pin female D-shells
MAXIMUM SIGNAL LEVEL: 300 V DC or RMS, 1 A switched (2A carry), $60 \mathrm{~W}, 125 \mathrm{VA}$
COMMON MODE VOLTAGE: 300V DC or RMS between any terminal and chassis.
VOLT-HERTZ LIMIT: 8×10^{7}.
CONTACT LIFE: $>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$

	Dual $\mathbf{1 \times 4 \mathbf { B } ^ { \mathbf { 2 } }}$	Single $\mathbf{1 \times 9 6}$
Channel Resistance (end of contact life)	$<1.5 \Omega$	$<2.5 \Omega$
Contact Potential (differential)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 2 \mu \mathrm{~V}$
Offset Current	$<100 \mathrm{pA}$	$<100 \mathrm{pA}$
Isolation	$5 \times 10^{9} \Omega, 200 \mathrm{pF}$	$5 \times 10^{9} \Omega, 400 \mathrm{pF}$
\quad Differential	$10^{9} \Omega, 50 \mathrm{pF}$	-
Bank-Bank	$10^{9} \Omega, 50 \mathrm{pF}$	$10^{9} \Omega, 50 \mathrm{pF}$
Channel-Channel	$10^{10} \Omega, 200 \mathrm{pF}$	$10^{10} \Omega, 400 \mathrm{pF}$
\quad Common Mode		
Crosstalk Channel-Channel	$<-65 \mathrm{~dB}$	$<-65 \mathrm{~dB}$
\quad 300kHz	$<-55 \mathrm{~dB}$	$<-55 \mathrm{~dB}$
\quad 1MHz	$<-30 \mathrm{~dB}$	$<-30 \mathrm{~dB}$
\quad 20MHz:	25 MHz	15 MHz
Bandwidth		

TYPICAL SCANNING SPEEDS:
Switch Only ${ }^{3}$: Sequential scanning, single channel, immediate trigger advance: $>120 \mathrm{ch} / \mathrm{s}$
With Measurements Into Memory ${ }^{4}$:
DCV (10 V range) or 2 W Ohms ($1 \mathrm{k} \Omega$ range): $>110 \mathrm{ch} / \mathrm{s}$. 3- or 4 -Wire RTD: $>100 \mathrm{ch} / \mathrm{s}$.
4-Wire Ohms ($1 \mathrm{k} \Omega$ range): $>100 \mathrm{ch} / \mathrm{s}$.
ACV ($10 \mathrm{~V}, 400 \mathrm{~Hz}$ range): $>110 \mathrm{ch} / \mathrm{s}$.
GENERAL
ACTUATION TIME: 4ms.
RELAY TYPE: Latching electromechanical.
RELAY DRIVE SCHEME: Matrix.
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$
WEIGHT: 2.5 lbs .
SAFETY: Conforms to European Union Directive 73/23/EEC, EN61010-1
EMC: Conforms to European Union Directive 2004/108/EC, EN61326-1.

1. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$
2. 3706 mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Scanning script local to 3706 mainframe, within same bank, and break before make switching
4. 3706 mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay $=0,41 / 2$ digits (NPLC=.006) for ACV dmm. detectorbandwidth $=300$, for OHMs dmm.offsetcompensation=off. Scanning script local to mainframe, sequential scan within same bank (2 pole) or card (4 pole), and break before make switching

3723

- 60 two-pole or 30 four-pole channels for high speed scanning
- 120 channel single-pole mode for one-wire (common side) measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 200V, 1A switched or 1.25A carry signal capacity; 15W
- Relay actuation time $<0.5 \mathrm{~ms}$
- 20MHz bandwidth
- Ideal for multi-channel I-V testing with Model 2600 SourceMeter ${ }^{\circledR}$ instruments
- Long life dry reed relays ($>10^{9}$ operations)

Ordering Information

3723 Dual 1×30, High Speed, Reed Relay, Multiplexer Card

Dual 1×30, High Speed, Multiplexer Card 60 differential channels, long life reed relays

The Model 3723 offers two independent banks of high speed 1×30 two-pole multiplexers that are ideal for high speed scanning applications. The two banks can automatically be connected to the Series 3700 mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the Model 3723 as a single 1×60 twopole multiplexer or as a single 1×120 single-pole multiplexer. It also enables card-to-card expansion for even larger configurations.

By using high speed reed relays with actuation times of less than 0.5 ms , this card can meet demanding throughput applications. Another feature of the Model 3723 is its single-ended, one-pole mode, which supports up to 120 channels of single-wire measurements.

The Model 3723 uses two 78-pin D-sub connectors for signal connections. For screw terminal connections, use the Model 3723-ST for two- and four-pole configurations or the Model 3723-ST-1 for single-wire applications.

ACCESSORIES AVAILABLE

3720-MTC-1.5 78 Pin D-sub Female to Male Cable, 1.5 m (5 ft .)
3720 -MTC- $3 \quad 78$ Pin D-sub Female to Male Cable, 3 m (10 ft)
3723-ST Screw Terminal Block
3723-ST-1 Screw Terminal Block for single-pole applications
3791-CIT Contact Insertion and Extraction Tool
3791-KIT78-R $\quad 78$ Pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder cups)

SERVICES AVAILABLE

3723-3Y-EW-STD 1-year factory warranty extended to 3 years from date of shipment
3723-5Y-EW-STD 1-year factory warranty extended to 5 years from date of shipment
C/3723-3Y-STD 3 (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

30701 QUNO

5 J ELECTRONICS
power - test \& mersurement
08005834455
Tel: +44 1536416200
Fax: 08005835566
sales@sjelectronics.co.uk
www.sjelectronics.co.uk

Dual 1×30, High Speed, Multiplexer Card 60 differential channels, long life reed relays

Two-pole mode

Single-pole mode

MULTIPLEXER CONFIGURATION: Two independent 1×302-pole multiplexers. Banks can be connected together via relay creating a single 1×60 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for $1-2$, and 4 -wire.
CONTACT CONFIGURATION: 2 pole form A.
CONNECTOR TYPE: Two 78 pin male D-shells.
MODEL 3723-ST SCREW TERMINAL OPTION: \#22 AWG typical wire size with 0.062 inch O.D. 124 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 36 conductor per card maximum.
MAXIMUM SIGNAL LEVEL: 200V DC or RMS, 1A switched (1.25A carry), 15W.
COMMON MODE VOLTAGE: 300 V DC or RMS between any terminal and chassis.
VOLT-HERTZ LIMIT: 8×10.
CONTACT LIFE: Reed: $>10^{9}$ operations, no load. 10^{7} operations @ 100 V , 10 mA. EMR: $>10^{8}$ operations @ $5 \mathrm{~V}, 10 \mathrm{~mA} .10^{5}$ operations @ maximuum signal level.

	Dual 1×30^{1}	Single $1 \times 60^{1,2}$
Channel Resistance (end of contact life)	$<1.5 \Omega$	$<2.0 \Omega$
Contact Potential: Differential Single-Ended	$\begin{gathered} < \pm 6 \mu \mathrm{~V} \\ < \pm 12 \mu \mathrm{~V} \end{gathered}$	$\begin{aligned} & < \pm 6 \mu \mathrm{~V} \\ & < \pm 12 \mu \mathrm{~V} \end{aligned}$
Offset Current	$<250 \mathrm{pA}$	$<250 \mathrm{pA}$
Isolation		
Differential	$10^{10} \Omega, 260 \mathrm{pF}$	$10^{10} \Omega, 500 \mathrm{pF}$
Bank-Bank	$10^{10} \Omega, 75 \mathrm{pF}$	-
Channel-Channel	$10^{10} \Omega, 75 \mathrm{pF}$	$10^{10} \Omega, 75 \mathrm{pF}$
Common Mode	$10^{10} \Omega, 280 \mathrm{pF}$	$10^{9} \Omega, 625 \mathrm{pF}$
Crosstalk Channel-Channel		
300 kHz	$<-55 \mathrm{~dB}$	$<-55 \mathrm{~dB}$
1 MHz	$<-50 \mathrm{~dB}$	$<-45 \mathrm{~dB}$
20MHz:	$<-20 \mathrm{~dB}$	$<-20 \mathrm{~dB}$
$\underline{\text { Bandwidth }}$	20 MHz	10 MHz

TYPICAL SCANNING SPEEDS:
Switch Only ${ }^{3}$: Sequential scanning, single channel, immediate trigger advance: $>1000 \mathrm{ch} / \mathrm{s}$. With Measurements Into Memory ${ }^{4}$:

DCV (10 V range) or 2 W Ohms ($1 \mathrm{k} \Omega$ range): $>800 \mathrm{ch} / \mathrm{s}$.
3 - or 4 -Wire RTD: $>450 \mathrm{ch} / \mathrm{s}$.
4 -Wire Ohms ($1 \mathrm{k} \Omega$ range): $>450 \mathrm{ch} / \mathrm{s}$.
ACV ($10 \mathrm{~V}, 400 \mathrm{~Hz}$ range): $>800 \mathrm{ch} / \mathrm{s}$.

GENERAL

ACTUATION TIME: $<0.5 \mathrm{~ms}$.
RELAY TYPE: Dry reed.
RELAY DRIVE SCHEME: Direct.
RELAY DRIVE CURRENT: 10 mA .
INTERLOCK: Backplane relays disabled when interlock connection is removed.
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: 3.0 lbs .
SAFETY: Conforms to European Union Directive 73/23/EEC, EN61010-1.
EMC: Conforms to European Union Directive 2004/108/EC, EN61326-1.

1. Connections made using 3723 -ST accessory.
2. 3706 mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Scanning script local to 3706 mainframe, within same bank, and break before make switching.
4. 3706 mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay $=0,41 / 2$ digits (($P L C=0.006$), for ACV dmm.detectorbandwidth $=300$, for OHMs dmm.offsetcompensation=off. Scanning script local to mainframe, sequential scan within same bank (2 pole) or card (4 pole), and break before make switching.

3722

- 96 two-pole or 48 four-pole channels for general purpose measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 300V, 1A switched or 2A carry signal capacity; 60W, 125VA
- 1pV and 100pA offsets
- 25MHz bandwidth
- Relay closures stored in onboard memory
- Latching electromechanical relays
- Scan and measure over 110 channels/second

Ordering Information

3722 Dual 1×48, High Density, Multiplexer Card

Dual 1×48, High Density, Multiplexer Card

 96 differential channels, 300 Volts/1 Amp

The Model 3722 offers two independent banks of 1×48 two-pole multiplexers, which is ideal for applications that require a high channel count. The two banks can automatically be connected to the Series 3700 mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card as a single 1×96 two-pole multiplexer or to enable card-to-card expansion for even larger configurations. Another feature of this card is the latching electromechanical relays. They can accommodate $300 \mathrm{~V}, 1 \mathrm{~A}$ switched signal levels.

The Model 3722 uses two 104 -pin D-sub connectors for signal connections. A solder style connector kit (Model 3792-KIT104-R) and pre-assembled cables (Model 3722-MTC-1.5 and 3722-MTC-3) are available for card connections.

ACCESSORIES AVAILABLE

3722-MTC-1.5 104 Pin D-sub Male to Female Cable, $1.5 \mathrm{~m}(5 \mathrm{ft}$.) 3722-MTC-3 104 Pin D-sub Male to Female Cable, 3 m (10 ft .) 3791-CIT Contact Insertion and Extraction Tool
3792-KIT104-R 104 Pin Male D-sub Connector kit (contains 2 male D-sub connectors with housings and 208 solder-cup contacts)

SERVICES AVAILABLE

3722-3Y-EW-STD 1-year factory warranty extended to 3 years from date of shipment
3722-5Y-EW-STD 1-year factory warranty extended to 5 years from date of shipment
C/3722-3Y-STD $\quad 3$ (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

3010

UNO

5 J ELECTRONICS

power - test a mersurement
08005834455
Tel: +44 1536416200
Fax: 08005835566
sales@sjelectronics.co.uk www.sjelectronics.co.uk
\square

96 two-pole crosspoints with column expansion relays

MULTIPLEXER CONFIGURATION: 6 row by 16 column matrix Columns can be expanded using the backplane or isolated by relays.
CONTACT CONFIGURATION: 2 pole form A.
CONNECTOR TYPE: Two 50 pin male D-shells.
MODEL 3730-ST SCREW TERMINAL OPTION: \#22 AWG typical wire size with 0.062 inch O.D. 88 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 44 conductor per card maximum.

MAXIMUM SIGNAL LEVEL: 300V DC or RMS, 1A switched (2A carry), $60 \mathrm{~W}, 125 \mathrm{VA}$.
COMMON MODE VOLTAGE: 300 V DC or RMS between any terminal and chassis.
VOLT-HERTZ LIMIT: 8×10^{7}.
CONTACT LIFE: $>10^{5}$ operations @ maximuum signal level. $>10^{8}$ operations no load. ${ }^{1}$

	$\mathbf{6 \times 1 6} \mathbf{2 , 3}$
Channel Resistance (end of contact life)	$<1.0 \Omega$
Contact Potential (differential)	$< \pm 2 \mu \mathrm{~V}$
Offset Current	$< \pm 100 \mathrm{pA}$
Isolation	$10^{10} \Omega, 250 \mathrm{pF}$
\quad Differential	$10^{10} \Omega, 75 \mathrm{pF}$
\quad Channel-Channel	$10^{10} \Omega, 150 \mathrm{pF}$
\quad Common Mode	
Crosstalk Channel-Channel	$<-65 \mathrm{~dB}$
\quad 300kHz	$<-55 \mathrm{~dB}$
\quad 1MHz	$<-30 \mathrm{~dB}$
\quad 20MHz:	27 MHz

GENERAL

ACTUATION TIME: 4ms
RELAY TYPE: Latching electromechanical.
RELAY DRIVE SCHEME: Hybrid Matrix.
INTERLOCK: Backplane relays disabled when terminal assembly is removed.
OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$ Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: 2.5 lbs
SAFETY: Conforms to European Union Directive 73/23/ EEC, EN61010-1.
EMC: Conforms to European Union Directive 2004/108 EC, EN61326-1.

1. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.
2. Connections made using $3730-\mathrm{ST}$ accessory.
3. 3706 mainframe with all DMM backplane relays disconnected

3740

32 Channel Isolated Switch Card

 28 Form C relays and 4 high power Form A relays

The Model 3740 offers 28 general-purpose form C channels that are ideal for routing power or other control devices. For higher power applications of up to 7 A , four additional high current form A channels are provided.
If any general purpose signal requires routing to the Series 3700 mainframe backplane, terminal blocks are located on the card, which are enabled with jumpers. Custom configurations can be created with the user accessible terminal blocks. For additional protection, an onboard temperature sensor will notify the mainframe when the card's operating temperature exceeds $70^{\circ} \mathrm{C}$, compromising system specifications.
The Model 3740 uses two 50 -pin male D-sub connectors for signal connections. For screw terminal connections, use the detachable Model 3740-ST accessory.

ACCESSORIES AVAILABLE
3721-MTC-1.5 50 Pin D-sub Female to Male Cable, 1.5 m (5 ft) 3721-MTC-3 $\quad 50$ Pin D-sub Female to Male Cable, 3 m (10 ft) 3740-ST Screw Terminal Block
3790-KIT50-R $\quad 50$ Pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder cup contacts)

SERVICES AVAILABLE
3740-3Y-EW-STD 1-year factory warranty extended to 3 years from date of shipment
3740-5Y-EW-STD 1 -year factory warranty extended to 5 years from date of shipment
C/3740-3Y-STD 3 (Z540-1 compliant) calibrations within 3 years of purchase*
*Not available in all countries

AAMA
 vove
 S J ELECTROMICS
 power. test a measurement

08005834455
Tel: +44 1536416200
Fax: 08005835566
sales@sjelectronics.co.uk www.sjelectronics.co.uk

KEITHLEY

32 Channel Isolated Switch Card

28 Form C relays and 4 high power Form A relays

RELAY SWITCH CONFIGURATION: 32 general purpose independent channels. 28 channels of Form C switching at 2A and 4 channels of Form A switching at 7A. Relays can be connected to each other and backplane via removable terminal blocks.
CONTACT CONFIGURATION: General Purpose: 1 pole Form C. High Current: 1 pole Form A. CONNECTOR TYPE: Two 50 pin male D-shells.
MODEL 3740-ST SCREW TERMINAL OPTION: \#22 AWG typical wire size with 0.062 inch O.D. 84 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 44 conductors per card maximum.
MAXIMUM SIGNAL LEVEL: Form C: 300 V DC or RMS, 2 A switched (3A carry), $60 \mathrm{~W}, 125 \mathrm{VA}$. Form A: 250VAC 7A, 30VDC 7A, 210W.
COMMON MODE VOLTAGE: 300 V DC or RMS between any terminal and chassis. VOLT-HERTZ LIMIT: 8×10^{7}.
CONTACT LIFE: Form C: $>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$ Form A: $>10^{5}$ operations at maximum signal level, $>5 \times 10^{7}$ operations no load. ${ }^{1}$ CHANNEL RESISTANCE (end of contact life): $<0.5 \Omega$.
CONTACT POTENTIAL: $< \pm 3 \mu \mathrm{~V}$ typical per contact.
ISOLATION: Channel-Channel: $10^{\circ} \Omega,<200 \mathrm{pF}$. Common Mode: $>10^{10} \Omega,<150 \mathrm{pF}$.
Crosstalk (Channel-Channel, 50Ω load- 50Ω source): 100 kHz : $<-50 \mathrm{~dB} .1 \mathrm{MHz}:<-35 \mathrm{~dB}$. $10 \mathrm{MHz}:<-15 \mathrm{~dB}$.
BANDWIDTH: 30 MHz .

GENERAL

OVER-TEMPERATURE: Temperature sensor indicates over temperature. ACTUATION TIME: Form C: 4 ms . Form A: 10 ms .
RELAY TYPE: Form C: Latching electromechanical. Form A: Nonlatching electromechanical. RELAY DRIVE SCHEME: Direct.
INTERLOCK: Backplane relays disabled when interlock connection is removed. OPERATING ENVIRONMENT: Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$. STORAGE ENVIRONMENT: -25° to $65^{\circ} \mathrm{C}$.
WEIGHT: 2.5 lbs .
SAFETY: Conforms to European Union Directive 73/23/EEC, EN61010-1.
EMC: Conforms to European Union Directive 2004/108/EC, EN61326-1.
Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$

