Overview

• High Power AC Source Programmable AC power for frequency conversion

and product test applications

• Expandable Power Levels Available output power of 30, 45, 75 and 90 kVA per unit and multi-unit configurations for power

requirements up to 180 kVA and above

• Remote Control Standard RS232, USB and IEEE-488 (GPIB) and optional LAN interfaces are available for automated test applications.

Introduction

The BPS Series consists of multiple high power AC power systems that provide controlled AC output for ATE and product test applications.

This high power AC test system covers a wide spectrum of AC power applications at an affordable cost. Using state-of-the-art PWM switching techniques, the BPS Series combines compactness, robustness and functionality in a compact floor-standing chassis, no larger than a typical office copying machine. This higher power density has been accomplished without the need to resort to elaborate cooling schemes or additional installation wiring. Simply roll the unit to its designated location (using included casters), plug it in, and the BPS Series is ready to work for you.

Simple Operation

The BPS Series can be operated completely from its menu driven front panel controller. A backlit LCD display shows menus, setup data, and read-back measurements. IEEE-488, RS232C, USB and LAN remote control interfaces and instrument drivers for popular ATE programming environments are available. This allows the BPS Series to be easily integrated into an automated test system.

Configurations

The BPS is capable of delivering 30, 45, 75, 90, 150 or 180kVA of AC power. The 30 and 45kVA models come as dedicated single or three phase output while the 75, 90, 150 and 180kVA models are dedicated three phase.

For higher power requirements, simply parallel the BPS in multi-cabinet configuration. Multi cabinet systems always operate in three phase output mode commonly found in power systems.

Product Evaluation and Test

Increasingly, manufacturers of high power equipment and appliances are required to fully evaluate and test their products over a wide range of input line conditions. The built-in output transient generation and read-back measurement capability of the BPS Series offers the convenience of a powerful, and easy to use, integrated test system.

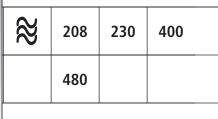
Avionics

With an output frequency range to 819 Hz, the BPS Series is well suited for aerospace applications. Precise frequency control and accurate load regulation are key requirements in these applications. The available remote control interfaces and SCPI command language provide for easy integration into existing ATE systems. The BPS Series eliminates the need for several additional pieces of test equipment, saving cost and space. Instrument drivers for popular programming environments such as National Instruments LabView[™] are available to speed up system integration.

Choice of voltage ranges

Standard voltage ranges are 150V L-N (259V L-L) and 300V (519V L-L) and are direct coupled output.

For applications requiring more than 300V L-N (or 519V L-L), the optional -HV output transformer provides a third additional 400V L-N and 693 V L-L output range which is internal to the AC chassis. No external magnetics modules are required.


Multi-Box Configurations

For high power applications, two BPS75 or BS90 chassis can be combined to provide 150kVA or 180kVA of output power. For higher power requirement please contact sales for custom configurations.

30–180 kVA

150–400 V

0–400 A / Phase

ETHERNET CSB (GPIB) RS232

S J ELECTRONICS **0800 583 4455** www.sjelectronics.co.uk sales@sjelectronics.co.uk

> AMETEK Programmable Power 9250 Brown Deer Road San Diego, CA 92121-2267 USA

Simple transition from R&D to Manufacturing.

The California Instruments Mx and RS Series are high performance, feature rich Research and Development solutions. That level of advanced performance is not always required in production and lab environments. Since the BPS shares common code structure and performance characteristics as the Mx and RS the BPS is ideally suited to easily transition into cost effective production solutions.

High Crest Factor

With a crest factor of up to 4.5, the BPS Series AC source can drive difficult nonlinear loads with ease. Since many modern products use switching power supplies, they have a tendency to pull high repetitive peak currents.

Remote Control

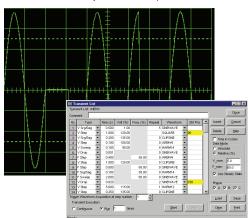
Standard RS232, USB and IEEE 488 (GPIB) along with optional LAN remote control interfaces allow programming of all instrument functions from an external computer. The popular SCPI command protocol is used for programming.

Application Software

Windows® application software is included. This software provides easy access to the power source's capabilities without the need to develop any custom code. The following functions are available through this GUI program:

- Steady state output control (all parameters)
- Create, run, save, reload and print transient programs
- Measure and log standard measurements
- Capture and display output voltage and current waveforms.
- Measure standard power measurements..
- Display IEEE-488, RS232C, USB and LAN bus traffic to and from the AC Source to help you develop your own test programs.

BPS Series - AC Transient Generation


The BPS Series controller has a powerful AC transient generation system that allows complex sequences of voltage and frequency to be generated. This further enhances the BPS's capability to simulate AC line conditions and disturbances. Transient generation is controlled independently yet time synchronized on all three phases. Accurate phase angle control and synchronized transient list execution provide unparalleled accuracy in positioning AC output events.

Transient programming is easily accomplished from the front panel where clearly laid out menu's guide the user through the transient definition process.

The front panel provides a convenient listing of the programmed transient sequence and allows for transient execution Start, Stop, Abort and Resume operations. User defined transient sequences can be saved to non-volatile memory for instant recall and execution at a later time. The included Graphical User Interface program supports transient definitions using a spreadsheet-like data entry grid. A library of frequently used transient programs can be created and saved using this GUI program.

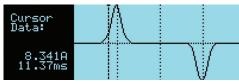
Transient List Data Entry from the front panel.

Transient List Data Entry in GUI program.

BPS Series

BPS Series - Measurement and Analysis

The BPS Series is much more than a programmable AC power source. It also incorporates an advanced digital signal processor based data acquisition system that continuously monitors all AC source and load parameters. This data acquisition system forms the basis for all measurement and analysis functions. These functions are accessible from the front panel and the remote control interface for the BPS Series.

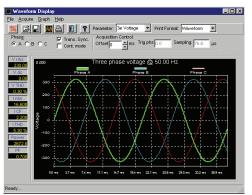

Conventional Measurements

Common AC measurement parameters are automatically provided by the data acquisition system. These values are displayed in numeric form on the front panel LCD display. The following measurements are available: Frequency, Vrms, Irms, Ipk, Crest Factor, Real Power (Watts), Apparent Power (VA) and Power Factor.

Waveform Acquisition

The measurement system is based on real-time digitization of the voltage and current waveforms using a 4K deep sample buffer. This time domain information provides detailed information on both voltage and current waveshapes. Waveform acquisitions can be triggered at a specific phase angle or from a transient program to allow precise positioning of the captured waveform with respect to the AC source output.

The front panel LCD displays captured waveforms with cursor readouts. The included GUI program also allows acquired waveform data to be displayed, printed, and saved to disk.


Acquired Current waveform (BPS Display).

MEASUREMENTS 1
VOLTAGE = 113.5VAC FREQ = 60.0Hz
CURRENT = 36.9A POWER = 4.11KW
PREVIOUS SCREEN
Maasuramant data far single phase (DDC Display)

Measurement data for single phase (BPS Display).

MEASUREMENTS1 ØA FREQ = 60.0 Hz	øABC øB øC
VOLT AC = 120.51 U 119.92 CURR = 9.342 A 8.453	Á 19.129 Á
POWER = 0.782 KW 0.763 PREVIOUS SCREEN	KW 0.734 K

Measurement data for all three phases (BPS Display).

Acquired three phase voltage waveforms display on PC.

30–180 kVA

BPS Series : Specifications

Operating Modes	4.5								
PS Series	AC								
AC Mode Output									
requency	Range: 16.00-819.0 Hz, -LF Option: 16.00-500.0 Hz, Resolution: 0.01 Hz: 16.00 - 81.91 Hz, 0.1 Hz: 82.0 Hz - 819.1 Hz								
Phase Outputs		1 or 3 Neutral: Floating, Coupling: DC (except for -HV option) Please specify Single (-1) or Three Phase (-3) for BPS30 and BPS45 at time of order.							
otal Power	BPS30-1/3;	30kVA, BPS45-1/3: 45	5kVA, BPS75-3: 75kVA	, BPS90-3: 90kVA, B	PS150-3:150kVA, E	PS180-3, 180kVA			
oad Power Factor	0 to unity a	at full output current							
AC Mode Voltage									
/oltage Ranges	Range AC	V Low V Hig 0-150 V 0-30	<u> </u>		% FS to 100 Hz, < 0 FS for 10 % line cha	.5 % FS 100 Hz to 8 inge	19 Hz		
External Sense	Voltage dro	p compensation (5% I	Full Scale)						
Harmonic Distortion (Linear)	Less than C	.5% from 16 - 66 Hz,	Less than 1% from 66	- 500 Hz, Less than	1.25% above 500 l	Hz			
DC Offset	< 20 mV								
.oad Regulation		@ - 100 Hz, 0.5% FS :	> 100 Hz						
External Amplitude Modulation		10 %, Frequency: DC -							
Voltage slew rate			ale change into resistiv	re load, 0.5V / uSec					
AC Mode Current									
Output	Model	BPS30-1/3	BPS45-1/3	BPS75	BPS90	BPS150	BPS180		
	woder	30 KVA	45 KVA	75 KVA	90 KVA	150 KVA	180 kVA		
	Note: Con	BPS30-1 V Lo:200 A V Hi: 100A Single phase BPS30-3 V Lo: 66.7A V Lo: 66.7A V Hi: 33.3A per phase 3 phase stant power mode prov	BPS45-1 V Lo:300 A V Hi: 150A Single phase BPS45-3 V Lo: 100 V Hi: 50A per phase 3 phase vides increased current	BPS75 V Lo: 166A V Hi: 83A per phase	BPS90 V Lo:200A V Hi: 100A per phase	BPS150 V Lo:332A V Hi: 166A per phase	BPS180 V Lo:400A V Hi: 200A per phase		
Peak Repetitive AC Current	4.5 x RMS	current for BPS30, 3.0	x RMS current for BPS	5) x RMS current for I	BPS90.		
Programming Accuracy		BPS150 is 2x BPS75 and BPS180 is 2x BPS90 Voltage (rms): ± 0.3 Vrms, Frequency: ± 0.01 % of programmed value, Current Limit: - 0 % to + 5 % of programmed value + 1A, Phase < 0.5° + 0.2° / 100 Hz with balanced load							
Programming Resolution		ns): 100 mV, Frequency ase mode, Phase: 0.1°	: 0.01 Hz from 16 - 81	.91 Hz, 0.1 Hz from	82.0 - 819 Hz, Curr	ent Limit: 0.1 A, 3 pł	hase mode,		
Constant Power AC Mode - Av									
Current (RMS) 100%									
50%					Full Power				
Ť	10%		50%	80	1)%	100%			
					oltage (RMS)				

Note: Specifications are subject to change without notice. Specifications are warranted over an ambient temperature range of 25°± 5° C. Unless otherwise noted, specifications are per phase for a sinewave with a resistive load and apply after a 30 minute warm-up period. For three phase configurations, all specifications are for L-N. Phase angle specifications are valid under balanced load conditions only.

© 2009 AMETEK Programmable Power All rights reserved. AMETEK Programmable Power is the trademark of AMETEK Inc., registered in the U.S. and other countries. Elgar, Sorensen, California Instruments, and Power Ten are trademarks of AMETEK Inc., registered in the U.S.

BPS Series : Specifications

30–180 kVA

Measurement										
Measurements - Standard (AC Measurements)	Parameter	Frequency		RMS Eurrent	Peak Current	Crest Factor	Real Power	Apparent Power	Power Factor	Phase
(, , , , , , , , , , , , , , , , , , ,	Range	16-100 Hz 100-820 Hz		-300 A	0-800 A	0.00-6.00	90 kW	90 kW	0.00-1.00	0.0-360.0
	Accuracy*	0.01% + 0.01 Hz	0.05V+0.02% 0	0.15A+.02%	0.15A+0.02%	0.05	30 W + 0.1%	30 VA + 0.1%	0.01	2.0°
	(±)		0.1V+0.02% 0).3A+.02%	0.3A+.02%	0.05	60 W + 0.1%	60 VA + 0.1%	0.02	3.0°
	Resolution*	0.01 Hz /	10 mV 1	0 mA	10 mA	0.01	10 W	10 VA	0.01	0.1°
		0.1 Hz								
			idth = DC to 6.7 kH 180 in single phase						and Range spe	ecifications are times
Protection										
Over Load	Constant Cu	irrent or Cons	tant Voltage mo	ode						
Over Temperature	Automatic s	hutdown								
Storage										
Non Volatile Mem. storage	16 instrume	nt setups, 200	D user defined w	vaveforms []	Pi onlv]					
Naveforms					. ,1					
	Std: Sine Wa									
Waveform Types	Sta: Sine wa	ive								
System Interface										
nputs	Remote shu									
Dutputs	Function Str	obe / Trigger	out							
Remote Control										
EEE-488 Interface			tener. Subset: Al			, RL2, SH1, SI	R1, T6, IEEE-4	88.2 SCPI Syn	tax	
RS232C Interface			Supplied with RS		e)					
AN (option)			eT, 100BaseT, R.							
JSB			460 Kb/s maxim							
Output Relay	Push button	controlled or	bus controlled	output relay	/					
	Push button	controlled or	bus controlled	output relay	/					
Output Relay AC Input Voltage		cified at time	bus controlled of order. All inp	, ,		Gnd. 208 ± 10	0% VAC, 230	± 10% VAC, 4	400 ± 10%	VAC,
AC Input Voltage	Must be spe	cified at time VAC		, ,			0% VAC, 230	± 10% VAC, 4 BPS150		VAC, BPS180
AC Input /oltage	Must be spe 480 ± 10%	cified at time VAC -1/3 2 187 VLL 1 2 207 VLL 1 360 VLL 9	of order. All inp	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + (BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL) assis Ea n AC rec ne se k cu	-
AC Input /oltage nput Line Current (per phase)	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @	cified at time VAC -1/3 2 187 VLL 1 2 207 VLL 1 360 VLL 9	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + 0 BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) .ine Frequency	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @	cified at time VAC -1/3 2 187 VLL 1 2 207 VLL 1 360 VLL 9 432 VLL 7	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + 0 BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) 	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz	cified at time VAC -1/3 2 187 VLL 1 2 207 VLL 1 360 VLL 9 432 VLL 7	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + 0 BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) .ine Frequency Efficiency Power Factor	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typica	cified at time VAC -1/3 2 187 VLL 1 2 207 VLL 1 360 VLL 9 432 VLL 7	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + 0 BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) 	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 256 A VLL 147 A	3ø, 3 wire + 0 BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) 	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel of	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 1 1 connection	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 V	VLL 285 A VLL 285 A VLL 256 A VLL 147 A /LL 122 A	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input Voltage Input Line Current (per phase) Line Frequency Efficiency Power Factor AC Service Inputs/Outputs Regulatory	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 1 1 connection	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v	VLL 285 A VLL 285 A VLL 256 A VLL 147 A /LL 122 A	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v	VLL 285 A VLL 285 A VLL 256 A LL 147 A LL 122 A	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) 	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v	VLL 285 A VLL 285 A VLL 256 A LL 147 A LL 122 A	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	BP - 350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) 	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel of IEC61010, E CISPR 11, G All remote in	cified at time VAC -1/3 2 2 187 VLL 1 2 207 VLL 1 360 VLL 9 432 VLL 7 	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 5 ARMS @ 432 v N50082-2, CE E A ections available	VLL 285 A VLL 285 A VLL 256 A VLL 147 A 122 A EMC and Sa e from the r	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ	BP 350 ARMS 1 314 ARMS 1 180 ARMS 1 150 ARMS	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 >) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency ifficiency Power Factor AC Service nputs/Outputs Regulatory iMI Connectors Physical Dimensions BPS30/45 Dimensions	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical Rear panel of IEC61010, E CISPR 11, G All remote in Height: 50"	cified at time VAC 1/3 2 187 VLL 1 207 VLL 9 432 VLL 7 432 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 5 ARMS @ 187 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 7 AR	VLL 285 A VLL 285 A VLL 256 A VLL 147 A LL 122 A EMC and Sa e from the r	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel.	m	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 > BPS75) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency Efficiency Power Factor AC Service nputs/Outputs Regulatory EMI Connectors Physical Dimensions BPS30/45 Dimensions BPS30/45 Weight	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel of IEC61010, E CISPR 11, G All remote in Height: 50" Per Chassis:	cified at time VAC -1/3 2 187 VLL 1 207 VLL 9 432 VLL 7 432 VLL 7 I I I I I I I I I I I I I	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 5 ARMS @ 4	VLL 285 A VLL 285 A VLL 256 A VLL 147 A /LL 122 A MC and Sa e from the r 1mm, Depth oximately, S	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel.	BP 350 ARMS 1 314 ARMS L 314 ARMS L 180 ARMS L 150 ARMS uirements Ibs / 560 Kg	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	BPS15C Each BPS75 ch requires its own service. Total Li currents are 2 > BPS75) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency Efficiency Power Factor AC Service nputs/Outputs Regulatory EMI Connectors Physical Dimensions BPS30/45 Dimensions BPS30/45 Weight BPS75/90 Dimensions	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G All remote in Height: 50" Per Chassis: Height: 76"	cified at time VAC -1/3 2 2 187 VLL 1 2 207 VLL 9 432 VLL 7 432 VLL 7 	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 5 ARMS @ 187 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 5 ARMS @ 432 v 5 ARMS @ 207 5 ARMS @ 207 7 AR	VLL 285 A VLL 285 A VLL 256 A LL 147 A LL 122 A MC and Sa MC and Sa EMC and Sa Imm, Depth ixmately, S mm, Depth:	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0″ 1016m	BP 350 ARMS 1314 ARMS 114 ARMS 1150 ARMS 150 ARMS uirements Ibs / 560 Kg m	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	BPS15C Each BPS75 ch requires its owner service. Total Li currents are 2 > BPS75) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency Efficiency Power Factor AC Service nputs/Outputs Regulatory EMI Connectors Physical Dimensions BPS30/45 Dimensions BPS30/45 Weight BPS75/90 Dimensions	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G All remote in Height: 50" Per Chassis: Height: 76" Per Chassis:	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 432 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 6 A A A A A A A A A A A A A A A A A A A	VLL 285 A VLL 285 A VLL 256 A LL 147 A LL 122 A MC and Sa MC and Sa EMC and Sa Imm, Depth ixmately, S mm, Depth:	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0″ 1016m	BP 350 ARMS 1314 ARMS 114 ARMS 1150 ARMS 150 ARMS uirements Ibs / 560 Kg m	S90 @ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	BPS15C Each BPS75 ch requires its owner service. Total Li currents are 2 > BPS75) assis Ea n AC rec ne se k cu	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency Efficiency Power Factor AC Service nputs/Outputs Regulatory EMI Connectors Physical Dimensions BPS30/45 Dimensions BPS30/45 Weight BPS75/90 Dimensions BPS75/90 Weight Chassis	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G All remote in Height: 50" Per Chassis: Height: 76" Per Chassis: Casters and	cified at time VAC 1/3 2 187 VLL 1 207 VLL 1 360 VLL 9 432 VLL 7 432 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 6 A 8 (100 - 100	VLL 285 A VLL 285 A VLL 256 A LL 147 A LL 122 A EMC and Sa e from the r 1mm, Depth coximately, S mm, Depth: coximately, S	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	BP 350 ARMS 1314 ARMS 180 ARMS 150 ARMS uirements Ibs / 560 Kg m Ibs / 785 Kg	S90 © 187 VLL © 207 VLL © 360 VLL © 432 VLL approximatel	BPS15C Each BPS75 ch requires its ownservice. Total Li currents are 2 > BPS75) Ea assis Ea n AC ree cu BF	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input /oltage nput Line Current (per phase) ine Frequency Efficiency Power Factor AC Service nputs/Outputs Regulatory EMI Connectors Physical Dimensions BPS30/45 Dimensions BPS30/45 Weight BPS75/90 Dimensions BPS75/90 Weight Chassis /ibration and Shock	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 60 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical Rear panel c IEC61010, E CISPR 11, G All remote in Height: 50" Per Chassis: Height: 76" Per Chassis: Casters and Designed to	cified at time VAC → 1/3 2 187 VLL 1 3 207 VLL 1 3 60 VLL 9 4 32 VLL 7 4 32 VLL 7 4 32 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 6 A A A A A A A A A A A A A A A A A A A	VLL 285 A VLL 285 A VLL 256 A /LL 147 A /LL 122 A EMC and Sa e from the r 1mm, Depth oximately, S mm, Depth: oximately, S portation lev	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	BP 350 ARMS 1314 ARMS 180 ARMS 150 ARMS uirements Ibs / 560 Kg m Ibs / 785 Kg	S90 © 187 VLL © 207 VLL © 360 VLL © 432 VLL approximatel	BPS15C Each BPS75 ch requires its ownservice. Total Li currents are 2 > BPS75) Ea assis Ea n AC ree cu BF	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x
AC Input Voltage Input Line Current (per phase) Line Frequency Efficiency Power Factor AC Service Inputs/Outputs Regulatory EMI	Must be spe 480 ± 10% BPS30 116 ARMS @ 105 ARMS @ 50 ARMS @ 47 - 63 Hz 85 % typical 0.95 typical EC61010, E CISPR 11, G All remote in Height: 50" Per Chassis: Height: 76" Per Chassis: Casters and Designed to Forced air co	cified at time VAC → 1/3 2 187 VLL 1 3 207 VLL 1 3 60 VLL 9 4 32 VLL 7 4 32 VLL 7 4 32 VLL 7 1 1 1 1 1 1 1 1 1 1 1 1 1	of order. All inp BPS45-1/3 75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360 v 5 ARMS @ 432 v 6 A 5 ARMS @ 432 v 6 A 5 ARMS @ 432 v 6 A 5	VLL 285 A VLL 285 A VLL 256 A /LL 147 A /LL 122 A EMC and Sa e from the r 1mm, Depth oximately, S mm, Depth: oximately, S portation lev	3ø, 3 wire + (BPS75 RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	BP 350 ARMS 1314 ARMS 180 ARMS 150 ARMS uirements Ibs / 560 Kg m Ibs / 785 Kg	S90 © 187 VLL © 207 VLL © 360 VLL © 432 VLL approximatel	BPS15C Each BPS75 ch requires its ownservice. Total Li currents are 2 > BPS75) Ea assis Ea n AC ree cu BF	BPS180 ch BPS90 chassis quires its own AC rvice. Total Line rrents are 2 x

BPS Series

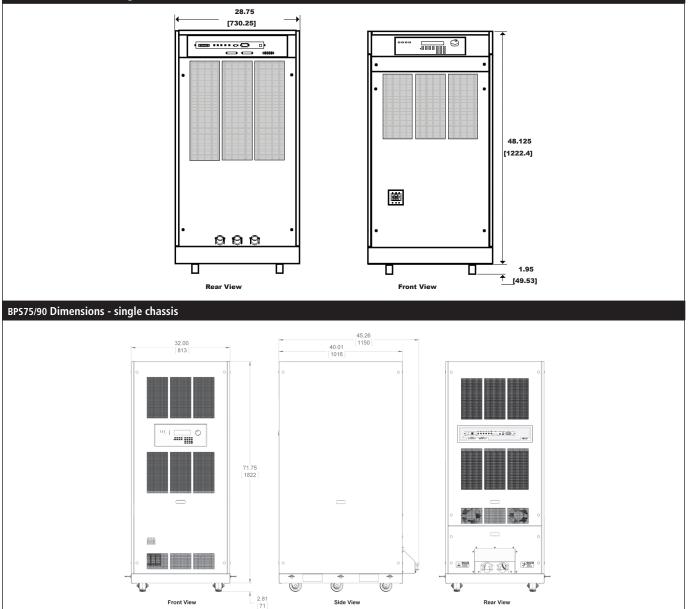
Supplied with

Standard: User/Programming Manual and Software on CD ROM. RS232C serial cable.

Input Voltage Settings

Specify input voltage (L-L) setting for each BPS system at time of order:

208 Configured for 208 V \pm 10 % L-L, 4 wire input. 230 Configured for 230 V \pm 10 % L-L, 4 wire input. 380 Configured for 380V +/- 10% L-L, 4 Wire Input 400 Configured for 400 V \pm 10 % L-L, 4 wire input. 480 Configured for 480 V \pm 10 % L-L, 4 wire input


Standard Model Options

- LF Limits maximum frequency to 500 Hz.
- -LAN Ethernet Interface.
- -HV Adds 400 V L-N AC-only output range.

Packaging and Shipment

All BPS systems are packaged in re-usable protective wooden crates for shipment.

BPS30/45 Dimensions - single chassis

